

UNIVERSITY EXAMINATIONS FOURTH YEAR EXAMINATION FOR THE AWARD OF THE DEGREE OF BACHELOR OF SCIENCE IN APPLIED COMPUTER/INFORMATION TECHNOLOGY FIRST SEMESTER 2022/2023 [SEPTEMBER-DECEMBER, 2022]

ACMP 455/BIT 400: NUMBER THEORY AND CRYPTOGRAPHY

STREAM: Y4S1

TIME: 2 HOURS

DAY: TUESDAY, 9:00 - 11:00 AM

DATE: 20/12/2022

INSTRUCTIONS

1. Do not write anything on this question paper.

2. Answer question ONE and any other TWO questions.

QUESTION ONE (30MKS)

a)	Using relevant examples, describe the transitivity and linear combination basic properties of divisibility. For the theorem, let a, b, c, x and y be integers										
	(Z). [6marks]										
b)	For each of the following numbers <i>a</i> and <i>n</i> , find the quotient <i>q</i> and the										
	remainder r when you divide a by n , and write down the equation										
	a = qn + r.										
	i.	a = 59, n = 7	[2marks]								
	ii.	a = -100, n = 9	[2marks]								
c)	Consider the following set and state whether they have the well ordering										
	principle. Explain your answer if:										
		$A = \{n \in \mathbb{N} \mid n. \sin(2n) > 8\}$	[2marks]								
d)	By hand determine:										
	i.	Whether 6 <i>b</i> , where <i>b</i> is 83522349769400598	[2marks]								
	ii.	Whether $7 b$, where $b = 16,807$	[4marks]								
e)	Define the Theorem: (Criterion of Divisibility by 3). With an example of your										
	choice explain how it can be improved. [4marks]										
f)	Find	all the positive divisors of 120.	[2marks]								
g)	Answer the following questions in relation to congruences:										
	i. Describe the reflexivity, symmetry and transitivity properties of										
		congruences.	[3marks]								
	ii.	State whether the following congruence is true:									

 $11 \equiv 26 \pmod{5}$ [1mark]

QUESTION TWO (20MKS)

- 1. Answer the following questions regarding the Sieve of Eratosthenes algorithm.
 - a) Why is it referred to as a sieve?
 - b) Discuss in details the four main steps in the Sieve of Eratosthenes algorithm [4marks]
 - c) Using the Sieve of Eratosthenes, find all the prime numbers when n = 110. [5marks]
- 2. Answer the following questions regarding Euclid's algorithm.
 - a) Explain the importance of Euclid's algorithm in computer science

[2marks]

[4marks]

[4marks]

[1mark]

- b) Using Euclid's algorithm, find the highest common factor of each of the following pairs of integers.
 - i. 93 and 21
 - ii. 231 and 49

QUESTION THREE (20MKS)

- 1. Using the Bézout's theorem to find integers v and w with av + bw = d when a and b are both positive. Find the highest common factor d, of 70 and 29 and then find integers v and w such that 70v + 29w = d. [6marks]
- 2. Does the following 10-digit code satisfy the ISBN congruence check? 0521683726 [6marks]

QUESTION FOUR (20MKS)

- 1. In your understanding, explain how the various Number theory concepts have been used to ensure that information is secure. [8marks]
- 2. Explain the following processes with examples as they are used in Number Theory & Cryptography.
 - a. Enciphering [6marks]
 - b. Deciphering [6marks]

QUESTION FIVE (20MKS)

1. Deciphering a message that has been enciphered using an affine cipher. Suppose you receive the enciphered message 3, 17, 18, 7, which you know has been created using the affine cipher

 $E(x) = 9x + 21 \pmod{26}$

What does the message say? [Use the conversation table for letters and number below – Table 1]. [10marks]

2. In detail discuss history, applications, impact, and real-life use of number theory in cryptography. [10marks]

Α	В	С	D	E	F	G	Н	Ι	J	K	L	Μ
0	1	2	3	4	5	6	7	8	9	10	11	12
Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Table 1. Conversion table for letter and numbers.