KISII UNIVERSITY

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF THE DEGREE OF BACHELOR OF ECOMICS AND STATISTICS

FIRST SEMESTER 2023/2024

[DECEMBER, 2023]

MATH 452: TESTS OF HYPOTHESIS

STREAM: ECON Y3S2

TIME: 2 HOURS

DAY:.....

DATE.....

INSTRUCTIONS

- 1. Do not write anything on this qu estion paper.
- 2. Answer question ONE and any other TWO questions.

QUESTION ONE (COMPULSORY 30MARKS)

(a) Briefly distinguish between the following terms.

- i. The power function an hypothesis test.
- ii. Type 1 error and type 11 error.
- iii. Critical region of a test and the best critical region of a test (BCR).

(6 marks)

(b) Let X ~B(4, $p=\theta$). To test the hypothesis

$$H_o: \theta = \frac{1}{2} against$$

H₁: $\theta = \frac{5}{6}$ The significance level α is set at $\alpha = \frac{1}{16}$. Obtain a BCR for testing H₀ vs H₁

[6marks]

(c) Let X ~P(λ). Consider the simple hypothesis Ho: $\lambda = \frac{1}{2}$ against the alternative H1; $\lambda \le \frac{1}{2}$ such that $\Omega = [\lambda: \lambda \le \frac{1}{2}]$. If x_1, x_2, \dots, X_{12} denote a random sample of size 12 from this distribution, we reject Ho if the observed value of $y = x_1 + x_2 + \dots + x_{12} \le 2$. If β [λ] is the power function of the test find the power at β [1/2], β [1/3], β [1/4], β [1/6] and β [1/12] and sketch the graph of β [λ]. What is the significance level of the test? (6 marks)

(d). Suppose X ~ N [μ , δ^2] where δ^2 is known. By taking a random sample of size n construct a best test [M.P] for testing

Ho ; $\mu = \mu_0$ against H1 ; $\mu > \mu_1$ (6marks)

(e). Describe the likelihood ratio test procedure.

QUESTION TWO { 20 MARKKS }.

a. State and prove Neyman – Pearson theory. (12 marks)

b. Let $X_1, X_2, --, X_{10}$ be a random sample of size 10 from a normal distribution, N [0, δ^2]. Find the BCR of size $\alpha = 0.05$ for testing

$$H_o: \delta^2 = 1$$
 against

 $H_1: \delta^2 = 2$

(8 marks)

QUESTION THREE (20 MARKS)

(a) Consider a simple regression model

 $Y_i = \alpha + \beta x_i + e_i$ where α , β are constants and $e_i \sim N(0, \delta^2)$. Derive a test statistic for testing the hypothesis Ho: $\beta = 0$ against $H_1 : \beta = 0$. (15 marks)

(b) Consider the following data

ſ	Х	-2	-1	0	1	2
	Y	0	0	1	1	3

Fit a straight line and test H₀: β =0 against H₁ : β ≠ 0 at 5% level of significance. (5 marks)

QUESTION FOUR (20 MARKS)

Let $X_{1,} X_{2,-}$, X_n be a random sample of size n from a normal distribution $X \sim N(\theta_1, \theta_2)$. Use the like hood ratio test to obtain the BCR of size α for testing $H_0: \theta_1 = 0$ against $H_1: \theta_1 \neq 0$. (20marks)

(6 marks)