KISII UNIVERSITY- KERICHO CAMPUS

FACULTY OF INFORMATION SCIENCE AND TECHNOLOGY

COURSE CODE: BINT 0123 -UNIT NAME: MATHEMATICS FOR COMPUTING

a. Define the following terminologies as used in mathematics for computing:

i.	Subset`	[3 marks]
ii.	Universal Set	[3 marks]

- iii. Venn diagram [3 marks]
- b. The quality controller in a given firm had an accurate record of all the iron bars produced

in May 2017. The following data shows those records

	Bar lengths(cm)		201-250	251-300	301-350	351-400	401-450	451-500	501-550
	No. of bar	`S	25	36	49	80	51	42	30
L	i. Calculate the mean of the length of bars					[6 ma	rks]		
ii. Calculate the standard deviation of the of the lengths of the bars [6 mark					rks]				
	iii.	iii. Find the median [4 marks]							rks]
Qı	Question two [15 marks]								
	a. Perfor	m the f	following a	rithmetic op	perations (sl	how your ca	alculations)		
	i. 111011 + 111001 [3 ma					[3 ma	rks]		
	ii. 10001.011 + 101010 [3 marks]						rks]		
	iii. 110101 - 11011					[3 ma	rks]		
	iv. 11010101.10111- 11.01010				[3 ma	rks]			

b. The frequency distribution for the value of resistance in ohms of 48 resistors is as shown.Determine the mean value of resistance. [5 Marks]

Range	Frequency
20.5–20.9	3
21.0–21.4	10
21.5–21.9	11
22.0–22.4	13
22.5–22.9	9
23.0–23.4	2

Question Three [15 marks]

a.	Determine the standard deviation from the mean	of the set of numbers: {5, 6, 8, 4, 10, 3}
	correct to 4 significant figures.	[5 Marks]

b. Use the laws and rules of Boolean algebra to simplify the following expressions:

i.
$$(P + \overline{P} \cdot Q) \cdot (Q + \overline{Q} \cdot P)$$
 [5 marks]
ii. $F \cdot G \cdot \overline{H} + F \cdot G \cdot H + \overline{F} \cdot G \cdot H$ [5 marks]

Question four [15 marks]

a. Differentiate between the following terms as used in set theory

. .

i.	Union and Intersection	[4 marks]
ii.	Universal Set and Empty Set	[4 marks]

- b. Determine the mean, median and mode for the set:
 - $\{2, 3, 7, 5, 5, 13, 1, 7, 4, 8, 3, 4, 3\}$ [4 marks]
- c. What are the differences between Straight Line, Quadratic Graphs and Cubic Equations

	[3 marks]

Question five [15 marks]

a.	Conv	ert 3714_{10} to a binary number, via octal.	[6 marks]
b.	Conv	ert	
	i.	5F ₁₆ into its decimal equivalent	[3 marks]
	ii.	132 ₁₀ into its hexadecimal equivalent	[3 marks]

c. Convert 47.40625₁₀to a binary number. [3 marks]

Question six [15 marks]

a. Let $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6, 7\}, C = \{2, 3, 8, 9\}$. Then which elements will be contained in the following:

i.	$A \cup B$	[2 Marks]
ii.	$A \cup C$	[2 Marks]
iii.	$B\cup C$	[2 Marks]
iv.	$A \cap B$	[2 Marks]
v.	$A \cap C$	[2 Marks]
vi.	$B \cap C$	[2 Marks]

-

Question One

a.

- i. Subset Suppose every element in a set *A* is also an element of a set *B*, that is, suppose $a \in A$ implies $a \in B$. Then *A* is called a *subset* of *B*.
- ii. Universal set- All sets under investigation in any application of set theory are assumed to belong to some fixed large set called the *universal set*
- iii. Venn diagram is a pictorial representation of sets in which sets are represented by enclosed areas in the plane. The universal set U is represented by the interior of a rectangle, and the other sets are represented by disks lying within the rectangle.

b.

Bar lengths	No. of bars(f)	Class mid point	fx	fx^2
(cm)		(x)		
201 – 250	25	225.5	5637.5	1271256.25
251 – 300	36	275.5	9918	2732409
301 - 350	49	325.5	15949.5	5191562.25
351 – 400	80	375.5	30040	11280020
401 – 450	51	425.5	21700.5	9233562.75
451 – 500	42	475.5	19971	9496210.50
501 - 550	30	525.5	15765	8284507.50
	313		118981.50	47489526

Calculate the standard deviation of the lengths of the bars

$$\therefore \text{ standard deviation, } \sigma = \sqrt{\frac{\sum fx^2}{\sum f} \cdot \left(\frac{\sum fx}{\sum f}\right)^2}$$
$$= \sqrt{\frac{47489526}{313} \cdot \left(\frac{118981.50}{313}\right)^2}$$
$$= 84.99 \text{ cm}$$

Question two

a.

- i. 11010 + 101011 = 1000101
- ii. 10111.011 + 11010 = 110001.011

iii. 110101 - 11011 = 11010

iv.
$$11010101.10111 - 11.01010 = 110010.01101$$

b.

For grouped data, the mean value is given by:

$$\overline{x} = \frac{\sum (f x)}{\sum f}$$

where f is the class frequency and x is the class midpoint value. Hence mean value,

$$\overline{x} = \frac{(3 \times 20.7) + (10 \times 21.2) + (11 \times 21.7)}{+ (13 \times 22.2) + (9 \times 22.7) + (2 \times 23.2)}$$
$$= \frac{1052.1}{48} = 21.919.$$

Question three

a.

The arithmetic mean,

$$\overline{x} = \frac{\sum x}{n} = \frac{5+6+8+4+10+3}{6} = 6$$

Standard deviation, $\sigma = \sqrt{\left\{\frac{\sum (x-\overline{x})^2}{n}\right\}}$
The $(x-\overline{x})^2$ values are: $(5-6)^2$, $(6-6)^2$, $(8-6)^2$, $(4-6)^2$, $(10-6)^2$ and $(3-6)^2$.
The sum of the $(x-\overline{x})^2$ values,
i.e. $\sum (x-\overline{x})^2 = 1+0+4+4+16+9 = 34$
and $\frac{\sum (x-\overline{x})^2}{n} = \frac{34}{6} = 5.\dot{6}$

Hence, standard deviation,

$$\sigma = \sqrt{\left\{\frac{\sum (x - \overline{x})^2}{n}\right\}} = \sqrt{5.6}$$

= 2.380, correct to 4 significant figures

b.

i.

$$= P \cdot (Q + \overline{Q} \cdot P) + \overline{P} \cdot Q \cdot (Q + \overline{Q} \cdot P) = P \cdot Q + P \cdot \overline{Q} \cdot P + \overline{P} \cdot Q \cdot Q + \overline{P} \cdot Q \cdot \overline{Q} + \overline{P} \cdot Q \cdot \overline{Q} \cdot P = P \cdot Q + P \cdot \overline{Q} + \overline{P} \cdot Q + \overline{P} \cdot Q + \overline{P} \cdot Q + \overline{P} \cdot Q + \overline{Q} = P \cdot Q + P \cdot \overline{Q} + \overline{P} \cdot Q = P \cdot (Q + \overline{Q}) + \overline{P} \cdot Q = P \cdot 1 + \overline{P} \cdot Q = P \cdot 1 + \overline{P} \cdot Q = P + \overline{P} \cdot Q$$

ii.

$$= F \cdot G \cdot (\overline{H} + H) + \overline{F} \cdot G \cdot H$$

= $F \cdot G \cdot 1 + \overline{F} \cdot G \cdot H$
= $F \cdot G + \overline{F} \cdot G \cdot H$
= $G \cdot (F + \overline{F} \cdot H)$

Question four

a.

- i. The union of two sets A and B, denoted by A ∪ B, is the set of all elements which belong to A or to B; that is, A ∪ B = {x | x ∈ A or x ∈ B} The intersection of two sets A and B, denoted by A ∩ B, is the set of elements which belong to both A andB; that is, A ∩ B = {x | x ∈ A and x ∈ B}
- All sets under investigation in any application of set theory are assumed to belong to some fixed large set called the *universal set* which we denote by U unless otherwise stated or implied. Given a universal set U and a property P, there may not be any elements of U which have property P. For example, the following set has no elements:
- a. Straight Line The general equation of a straight line is y=mx +c, where m is the gradient i.e. dy/dx and c is the y-axis intercept., Quadratic Graphs The general equation of a quadratic graph is y=ax2 +bx +c, and its shape is that of a parabola. and Cubic Equations The general equation of a cubic graph is y=ax3 + bx2 +cx +d.

Question five [15 marks]

 $7202_8 = 111\ 010\ 000\ 010_2$

c.

i.	$5F_{16}$		
	$5x16^1 + 15x16^0$		
	90 + 15		
	=10510		
ii.	13210		
	132/16	8	4
	8/16	0	8
	$=84_{16}$		

d. Convert 47.40625_{10} to a binary number

					Remainder
47/2		23			1
23/2		11			1
11/2		5			1
5/2		2			1
2/2		1			0
1⁄2		0			1
1011112					
0.40625	Х	2	=	0.8125	
0.8125	Х	2	=	1.625	
0.625	х	2	=	1.25	
0.25	Х	2	=	0.5	
0.5	Х	2	=	1.0	

 101111.01101_2