Math 111: BASIC CALCULUS 1

TIME: 2 HOURS

INSTRUCTIONS

- 1. Do not write on this question paper
- 2. Answer questions ONE and any other three questions
- 3. Show all the relevant workings

QUESTION ONE (25MKS)

a) Differentiate the following equation

i)
$$y=x^{-2}(x-x^3)$$
 (3mks)
ii) $y=x(5x-2)+3(x+2)^2$ (3mks)

(b) Use the mid-ordinate rule to find the area enclosed by $y=-x^2+2x+8$, the y axis and the x axis using four strips (4mks)

b) Integrate the following

i) $\int_{2}^{4} (x^{3} - 3x^{2} + 2x - 1) dx$ (3mks)

- c) Estimate the area enclosed by the curve $y=\frac{1}{2}x^2 + 1$ between x = 1 and x = 4 using midordinate rule (4mks)
- d) Find the exact area by integration enclosed by the curve $y = 3x^2 + 2x + 1$ the x-axis x=1 and x=3 (3mks)

QUESTION TWO

a) Integrate the following:

$$\int_{1}^{2} (x^{2} - 6x + 2) dx \qquad (3mks)$$

a) Evaluate the following integrals

i)
$$\int_0^5 (x^3 + 6x^2 - 4x + 1) dx$$
 (3mks)
ii) $\int_1^4 (4t^3 - t^2 + 2t - 1) dt$ (3mks)

b) Find the exact area above and below the x axis hence the total area enclosed by the curve $y=x^2-10x+9$, the x axis and the lines x=4 and x=10 (5mks)

QUESTION THREE

- a) Find the exact area by integration enclosed by the curve $y = \frac{x^3 3x^2 + 2x}{x}$ the x-axis, x=1 and x=4. (3mks)
- b) A particle moves in a straight line such that after its displacement, s metres from a given point is $s = t^4 + 3t^2 + 4$, where t is the time in seconds. Determine the following, when t=4seconds

i)	Displacement	(2mks)
ii)	Velocity	(2mks)
iii)	Acceleration	(2mks)

c) Differentiate the following:

i)
$$y = \frac{x(x^2 - 1)}{x + 1}$$
 (3mks)

ii) $\sqrt{x} (x^{\frac{2}{3}} - x^{\frac{1}{2}})$ (3mks)

QUESTION FOUR

- a) A ball is kicked vertically upwards from a point 0.5m above the ground at a velocity of 16m/s. assuming that acceleration due to gravity is 10m/s, determine
 - i) An expression for its velocity t seconds later (3mks)
 - ii) The maximum height reached by the ball. (3mks)

(b) A particle moves along a straight line with a constant acceleration. At t=0, its velocity is u and it is at a fixed point O. if v is the velocity after t seconds. Show that

i)	$\mathbf{v} = \mathbf{u} + \mathbf{at}$	(3mks)
ii)	$s = ut + \frac{1}{2}at^2$	(3mks)

(c) Estimate the area enclosed by the curve $y=\frac{1}{2}x^2 + 2$, the x-axis, x = 1 and x = 3 using

i)	Mid-ordinate rule	(3mks)
ii)	Integration method	(3mks)
iii)	Percentage error	(3mks)

QUESTION FIVE

- a) Find the equation of the tangent to the given curve at the indicated point. $y=x^3 + 6x^2 - 3x + 1$, (x=0) (5mks)
- b) Integrate the following

i)	$\int_{0}^{5} x(x^2 - 6x + 5) dx$	(3mks)
ii)	$y = x^4 + 3x^2 + 2x$	(3mks)

c) Differentiate the following expression.

$$y = \frac{(x^2 + x)(x^{-2} + 1)}{x^2}$$
(3mks)

QUESTION SIX

- a) Given the curve $y = x^2 3x 1$ find the equation at the point (1, -3) of the;
 - i) The tangent (4mks)
 - ii) The normal through (2, 4) (3mks)
- b) Find the stationary points on the curve $y=4x^3 + 9x^2 30x + 10$. And state the nature of each point (5mks)
- c) Estimate the area bounded by the curve $y=\frac{1}{2}x^2 + 5$, the x-axis, the line x=1 and x=5 using trapezium rule (4mks)