

FOURTH YEAR EXAMINATION FOR THE AWARD OF THE DEGREE OF BACHELOR OF SCIENCE IN PETROLEUM CHEMISTRY SECOND SEMESTER 2021/2022 (FEBRUARY-JUNE, 2022)

CHEM 421: REACTOR DESIGN

STREAM: Y4 S2

TIME: 2 HOURS

DAY: MONDAY, 12. 00 PM - 2.00 PM

DATE: 16/05/2022

INSTRUCTIONS:

1. Do not write anything on this question paper.

2. Answer all questions in section A and any TWO (from section B.

SECTION A (COMPULSORY) - 40 MARKS

QUESTION ONE

i.	Write down the Arrhenius equation and its significance in reactor design.	[3marks]
ii.	State the Baiss theory	[2marks]
iii.	Define the term Activation Energy as used in reactor design.	[2marks]
iv.	What determines the success or failure of any chemical plant?	[2marks]
v.	Briefly explain the abbreviation CRE in reactor design	[1 mark]

QUESTION TWO

Differentiate between the following terms as used in Reactor Design

i.	Conversion and Yield	[2marks]
ii.	Elementary and non-elementary reactions	[2marks]
iii.	Batch and semi-batch Reactors	[2marks]
iv.	Single and Multiple Reactors	[2marks]
v.	Exothermic and Endothermic Reactions	[2marks]

QUESTION THREE

Using the general equation $aA + bB \rightarrow cC + dD$, answer the following questions;

i. ;;	Define the term ,limiting reactant as used in Chemistry.	[2marks]
11. iii.	Give the stoichiometric coefficients of the above equation with respect to and product.	each reactant [2marks]
iv. v.	Give the overall reaction order of the equation above Assuming reactant B is the limiting reactant;	[2marks]
	a) Give the corresponding stoichiometric coefficients of each reactant an	nd product
		[4marks]
	b) Write down the rate of reaction or disappearance of the limiting reacta	ant.
		[2marks]
	c) Derive the rates of formation equations of products C and D	
		[4marks]
Q.4 Li differe	ist the three main basic models used in estimation of most important proces ent chemical reactors.	ss variables of [3marks]

Q.5 Differentiate between reactors that work in steady state and transient state. Giving an example in each state. [2marks]

SECTION B

Answer any TWO questions in this section

QUESTION SIX

a)	Name four types of reactors.	[4marks]
b)	Give two important characteristics of a Tubular reacto.r	[2marks]
c)	Draw a batch reactor and label its important parts giving one advantage	ge.
		[6marks]
d)	Give a clear difference between a paced bed reactor and a tubular reac	tor.
		[2marks]
e)	Write down one example of an homogeneous reaction.	[1mark]

QUESTION SEVEN

a)	Briefly explain recycle reactors.	[2marks]
b)	Which reactor minimizes unwanted side reaction? How?	[2marks]
c)	Give two disadvantages of a continuous-stirred Tank Reactor, CSTR	[2marks]
d)	There are a number of types of reactions in chemistry. Give two types of	of reactions based
	on the direction of reaction and give an example in each.	[4marks]

- e) Reactor design knowledge and experience has been obtained from many areas. Which areas are they? [2marks]
- f) The performance and viability of any reactor in chemical industries relies upon three main factors. Briefly explain the factors. [3marks]

QUESTION EIGHT

a) Giving examples, state the five traditional types of reactions in Chemistry.

[5marks]

- [2marks] b) What does the term Molecularity mean in reaction design?
- c) Write down an equation that can be used to estimate the activation energy of a reaction taking place at the same concentration but two different temperatures.

[2mrks]

d) Using the graph below, answer the following questions;

- i. What kind of reaction depicts the graph above [1mark]
- ii. Briefly explain how this type of reaction takes place in a chemical reactor. Indicating the reactants, products and activated complex positions on the graph. [4marks] [1mark]
- iii. What is **B**?