MATH 111

UNIVERSITY EXAMINATIONS

SPECIAL EXAMINATION

FIRST YEAR EXAMINATION FOR THE AWARD OF

DEGREE IN BACHELOR OF SCIENCE IN MATHEMATICZ & COMPUTING

FIRST SEMESTER 2021/2022

<u>(JULY, 2022)</u>

MATH 111: CALCULUS 1

STREAM: Y1 S1

TIME: 2 HOURS

DATE: 20/07/2022

at

DAY: WEDNESDAY, 8.00 AM - 10.00 AM

INSTRUCTIONS:

Do not write anything on this question paper. Answer Question ONE (Compulsory) and any other TWO Questions.

QUESTION ONE (30 marks)

a)	If $x = \cos t$ and $y = 1 - \sin 2t$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ (6)	4marks)
b)	State thre conditions for a function to be continuous at a point $x = a$ (3marks)
c)	Find $\frac{dy}{dx}$ if $y = e^{3x}(\sin 2x)$ (6)	3marks)
d)	Find $f'(x)$ for $f(x) = x^2 + 4x - 7$ from first principle (4marks)
e)		
f)	Investigate the nature of the turning point of the curve $y = 3x^2 + 6x^2 - 15x^2$	c + 51
	i) Locate the turning point (5marks)
	ii) Determine the nature of the turning point	
g)	Find the equation of the tangent and the normal to the curve $y = x^3 - 2x^2$.	+3x - 1

the point P(2,5). (6marks)

h) Evaluate the limit $\lim_{x \to 0} \frac{\sin(3x)}{\sin(8x)}$

QUESTION TWO (20 marks)

- a) Find f'(x) given that $f(x) = \log_3 \sin(2x^2 + 5)$ (5marks)
- b) A 15m ladder is placed to rest against the wall so that the bottom is 10m away from the wall. If the ladder is pushed towards the wall at a rate of 0.25m per sec. Determine how fast is the top of the ladder moving up the wall at t = 12 sec.

(7marks)

c) find
$$\frac{dy}{dx}$$
 if $xy + ln(x + y) = 1$
(5marks)

d) find
$$\frac{dy}{dx}ify = \cos(\cos x)$$

(3marks)

QUESTION THREE (20 marks)

a) Find from the first principles, the derivative of the functions

(6marks)

i.
$$f(x) = sinx$$

ii.
$$f(x) = \sqrt{x+2}$$

b) Find the derivatives of the following functions using appropriate methods

i)
$$y = \frac{x^2 + 3x - 4}{2x + 1}$$
 (4marks)

ii)
$$y = \cos(5x^3)$$
 (3marks)

c) Differentiate the implicit function;

d)
$$x^2 + 2y^3$$
 (4 marks)

e)
$$\operatorname{find} \frac{dy}{dx} i f y = \cos(\cos x)$$
 (3marks)

(5marks)

QUESTION FOUR (20 marks)

a) Given the function $g(y) = \begin{cases} y^2 + 5 & ify < -2\\ 1 - 3yify \ge -2 \end{cases}$. Compute the $\lim_{y \to -2} g(y)$

(5marks)

b) At what point does the tangent to the function $y = x^3 + 2x^2$ have a slope of zero. (6marks)

c) Given that
$$P = 3q^4 - 4q^2 + 3;$$
 $\frac{d^3p}{dq^3}$

(4marks)

 A church window with rectangular bottom and a semi-circular top is build using a 12m framing material. Determine the dimensions of the window to let in most light.

(5marks)

QUESTION FIVE (20 marks)

e) The amount of air in a balloon at any time t is given by $V(t) = \frac{6\sqrt[3]{t}}{4t+1}$. Determine if the balloon is being drained or being filled with air at t = 8.

(4marks)

f) Evaluate the derivative of the function
$$f(t) = \frac{t}{1+t}$$
 from the first principles

(4marks)

g) Differentiate $y = \tan^{-1} 3x^2$

(4marks)

a) **Eva**luate : $\lim \frac{\tan 2x}{x}$

(4marks)

i. The parametric equation of the curve are $x = e^t and \sin t \cdot Find \frac{dy}{dx} \frac{d^2y}{dx^2}$ (4marks)