MATH 112

MATH 112: BASIC MATHEMATICS

STREAM: Y1 S1

TIME: 2 HOURS

DATE: 27/07/2022

(4 marks)

DAY: WEDNESDAY, 8.00 AM - 10.00 AM

INSTRUCTIONS:

1. Do not write anything on this question paper.

2. Answer Question ONE (Compulsory) and any other TWO Questions.

QUESTION ONE (COMPULSORY)

- a) i) Distinguish between a tautology and a contradiction. (2 marks)
 ii) Write the negation of the statement "If I recover from my illness, I will go to Church." (2 marks)
- b) Find the power set of $A = \{1,2,3,4\}$
- c) Given $A = \{c, d, f, i\}B = \{b\}E = \{e, f, g\}$ and $U = \{a, b, c, d, e, f, g, h, i\}$. Show that $A E = A \cap B^c$ (5 marks)
- d) i) A basket contains 4 apples, 5 oranges and 8 bananas. How many ways can 2 apples, 1 orange and 2 bananas be chosen? (4 marks)
 ii) In how many ways can an even number greater than 2 000 be formed from the digits 1,2,3,4? (4 marks)
- e) Let $z_1 = -4 + 6i$ and $z_2 = 3 5i$, find
 - i) $z_1 z_2$ (2 marks)
 - ii) $z_1 \times z_2$ (3 marks)
- f) i)
- ii) Determine the number of ways a basketball coach can select five players from a team of twelve players to participate in a match. (3 marks)

g) Determine the inverse function of the following function

$$f: x \to \frac{4x+5}{7x-6}; x \neq \frac{6}{7}$$
 (3 marks)

Question Two (20 marks)

a)	Given	$f(x) = 2x + 1$ and $g(x) = 2x^2 + 1$		
	i)	Find $fog(x)$	(3 marks)	
	ii)	Find $(fog)^{-1}(x)$	(3 marks)	
	iii)	Evaluate $fog(-3)$	(2 marks)	
b)	Let $A =$	$= \{1, 2, 3, 4, 5\}$ and $B = \{a, b, c, d\}$ find $A \otimes B$	(2 marks)	
c)	Prove	that $\sqrt{2}$ is not a rational number.	(8 marks)	
d)	State th	State the domain and range of the function represented by the following ordered points		

 $\{(2,6)(3,9)(4,12)(5,15)(6,18)\}$ (2 marks)

Question Three (20 marks)

- a) Draw a Venn diagram to illustrate $A \cup (B \cap C)$ (2 marks)
- b) i) Given a = 3 i and b = 1 + 2i find the modulus of 2a + b (3 marks)

ii) If
$$z = \frac{1+i}{3+yi} + \frac{3+2i}{y+3i}$$
 and given that $Re(z) = Im(z)$ find the value of y.

(5 marks)
c) Using the universal
$$setU = \{a, b, c, d, e, 1, 2, 3, 4, 5\}$$
, $setA = \{1, 2, 3\}$ and
 $setB = \{a, b, c, 2, 5\}$.
i) Prove that $(A \cap B)^{C} = A^{C} \cup B^{C}$ (4 marks)
ii) Find $A\Delta B$ (3 marks)

d) Simplify nC_{n-1}

Question Four (20 marks)

- a) Use trigonometric identities or otherwise to write the following in a more simplified form
 - i) $Cos 50^{\circ} Sin 40^{\circ} Cos 40^{\circ} Sin 50^{\circ}$ (2 marks)
 - ii) $Cos80^{\circ}Sin20^{\circ} Sin80^{\circ}Cos20^{\circ}$ (2 marks)
- b) Use quadratic formula to solve $x^2 + 2x + 10 = 0$ in the form $= a \pm bi$.

(4 marks)

(3 marks)

c) Determine the 7^{th} term of the following sequence

$$\frac{x^2}{x+1}, \frac{x^5}{(x+1)^2}, \frac{x^8}{(x+1)^3}, \dots$$
 (4 marks)

d) i) Show that $1 + cot^2\theta = cosec^2\theta$ (4 marks) ii) Simplify

$$\frac{1}{1+\cos x} + \frac{1}{1-\cos x} \tag{4 marks}$$

Question Five (20 marks)

- a) State the converse, inverse and contra-positive of the following implication "If $\theta = 60^{\circ}$ then $\cos\theta = \frac{1}{2}$." (3 marks)
- b) A test has 5 questions in Section A and 3 questions in Sections B. A student has to choose any 3 questions and 2 questions from sections A and B respectively and answer the questions in any order. Find how many ways the student
 - i) Can choose the questions to answer (3 marks)
 - ii) Can order the questions she answers (3 marks)
- c) Verify that the proposition $(p \land q) \land \sim (p \lor q)$ is a contradiction (5 marks)
- d) Show that $\sim (p \land q)$ is logically equivalent to $\sim p \lor \sim q$ (6 marks)