

# UNIVERSITY EXAMINATIONS

## **SPECIAL EXAMINATION**

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE IN BACHELOR OF EDUCATION SCIENCE SECOND SEMESTER 2021/2022 (JULY, 2022)

## **MATH 113: VECTORS AND MECHANICS**

STREAM: Y1 S2 TIME: 2 HOURS

DAY: TUESDAY, 3.00 PM - 5.00 PM DATE: 26/07/2022

### **INSTRUCTIONS:**

1. Do not write anything on this question paper.

2. Answer Question ONE (Compulsory) and any other TWO Questions.

## QUESTION ONE (COMPULSORY) (30 MARKS)

- a) If  $\mathbf{A} = (4, 2, 5)$  and  $\mathbf{B} = (5, 7, -3)$ . Find  $\overline{\mathbf{AB}}$  and  $|\overline{\mathbf{AB}}|$ . (3marks)
- b) A body is projected vertically upwards with an initial velocity of 75m/s. Find:
  - i) Time taken to reach maximum height. (2marks)
  - ii) The maximum height reached. (2marks)
  - iii) The time of flight. (2marks)
- c) Two masses 20kg and 8kg are connected to a fine string which passes over a smooth pulley fixed at the end of an inched plane which is 17 *metres* long and 8*metres* high. The heavier particle rests on the plane and the lighter particle hangs on the pulley. Find the acceleration of the masses and the tension in the string. (5marks)
- d) The sides of a square lamina *A*, *B*, *C*, *D* are each 4*metres* long. Along *AB*, *CB*, *CD*, *DA* and *BD* act as forces of magnitude 2, 4, 6, 8 and 10 N respectively. Find the algebraic sum of their moments about:

i) Point A (2marks)

ii) The center of the square. (2marks)

- e) Explain the general principle of moments. (3marks)
- f) A body of mass 15kg is held on a smooth slope at  $30^0$  to the horizontal. Find the acceleration of the body when it is released and the normal reaction to the body. (5marks)

g) If  $\mathbf{A} = 4i - 4j + 3k$  and  $\mathbf{B} = -2i + j - 2k$ . Find the unit vector: i)in the direction of  $\mathbf{A}$  (2marks) ii) perpendicular to the plane of  $\mathbf{A}\mathbf{B}$  (2marks)

### **QUESTION TWO (20MARKS)**

- a) Derive the third equation of motion under constant acceleration. (4marks)
- b) A body has an initial velocity of 150m/s and is subjected to an acceleration of -20m/s/s. find its velocity after 4 *seconds*. (3marks)
- c) A non-uniform ladder 30metres long and 50kg mass rests with the end A against a smooth vertical wall and the other end B on a smooth ground 6metres from the wall. It is maintained in this position by a horizontal cord attached at B. If the centre of gravity is 10metres from B; find:

i)Normal reaction at A (3marks)

ii)Tension in the cord (1mark)

iii)Normal reaction at B (2marks)

- d) The distance x metres moved by a body after t seconds is given by  $x = t^2 + 4t + 3$  metres. Find its velocity and acceleration after 3 seconds. (3marks)
- e) If  $\mathbf{A} = 2i j + 3k$  and  $\mathbf{B} = -3i 2j + 5k$ . Find:

i) The magnitude of A + B (2marks)

ii)The angle between the vectors **A** and **B**. (2marks)

### **QUESTION THREE (20MARKS)**

a) Prove that the following vectors are parallel:

$$u = 2i - 3j + k$$
 and  $v = -i + \frac{3}{2}j - \frac{1}{2}k$  (3 marks)

b) The mass of a vehicle is 1500kg. The combined frictional and resistance is 750N. Find the driving force of the vehicle, if it is traveling on a level surface with acceleration of 3m/s/s.

(3marks)

- c) Find the displacement and velocity of a particle after 3 *seconds* whose initial velocity is  $\binom{2}{5}m/s$  if it had a constant acceleration of  $\binom{3}{-4}m/s/s$ . (3marks)
- d) A particle moving in a straight line has an acceleration of (2t 9)m/s/s after t seconds. If its velocity at t = 0 is 18m/s. Find the value of t for which it is stationary. (5marks)
- e) Four vectors of magnitude 4,  $5\sqrt{2}$ , 6 and 8 units inclined at angles of  $45^{\circ}$ ,  $60^{\circ}$ ,  $75^{\circ}$ , and  $150^{\circ}$  to the x-axis. Find the magnitude and direction of the resultant vector *R*. (4marks)
- f) A vector  $\overrightarrow{OP}$  has a magnitude of 4 units in the direction of  $30^{\circ}$ . Find its resolution along the x and y axis respectively. (2marks)

## **QUESTION FOUR (20MARKS)**

- a) Given the vectors  $\mathbf{A} = 2i 4j + 3k$  and  $\mathbf{B} = 2i 3j + 5k$ , find: i) $\mathbf{A} \times \mathbf{B}$  ii)  $\mathbf{B} \times \mathbf{A}$  (4marks)
- b) Forces of magnitude 3, 7 and 5N act along the sides AB, BC and CA of an equilateral triangle. Find the magnitude and direction of the resultant with AB along the x axis. (5marks)
- c) A body of mass 8kg is allowed to slide down a rough surface inclined at  $40^0$  to the horizontal against a frictional force of 20N. find:
  - i) the normal reaction R (2marks)
  - ii) the co-efficient of friction (2marks)
    - iii) The acceleration of the body (2marks)
- d) A body of mass 4kg is placed on a smooth surface and is connected by a string over a smooth pulley to a mass of 6kg hanging freely. The system is released. Find the acceleration of the system and the tension on the string. (5marks)

#### **QUESTION FIVE (20MARKS)**

- a) A particle of weights 3, 4, 5 and 6N are placed at the vertices of a rectangular frame A, B, C and D respectively. If AB = 6cm and BC = 12cm, find the position of the centre of gravity relative to the point A. (5marks)
- b) If A = 2i 3j + k, B = i + 4j 2k and C = -3i + 2j + k, find: i)  $A \cdot B \quad ii) \quad A \times C \quad iii) \quad A \cdot (B \times C)$  (6marks)
- c) Show that the area of a parallelogram is given by  $|A \times B|$ . Hence, find the area of a parallelogram with sides A = 3i + j 2k, B = i 3j + 4k. (5marks)
- d) The path of a particle after t seconds is given by  $r = ti + (3t t^3)j$ . Find its velocity and acceleration after 3 seconds. (4marks)