KISII UNIVERSITY

UNIVERSITY EXAMINATIONS 2022/2023

FIRST YEAR SEMESTER ONE EXAMINATION FOR THE AWARD OF THE DEGREE OF BACHELOR OF SCIENCE MATHEMATICS AND COMPUTING

MATH 102: DISCRETE MATHEMATICS

STREAM: Y1S1

TIME: 2 HOURS

INSTRUCTIONS

- 1. Do not write anything on this question paper.
- 2. Answer question **ONE** and any other **TWO** questions.

QUESTION ONE [COMPULSORY] (30 MARKS)

a) State the domain and range of the function represented by the following ordered points	
$\{(2,6)(3,9)(4,12)(5,15)(6,18)\}$	(2 marks)
b) Show that the following propositions are equivalent using a truth table	
$P \Rightarrow (Q \Rightarrow R) \equiv (P \land Q) \Rightarrow R$	(8 marks)
c) Define a function.	(2 marks)
d) Prove that $\sqrt{2}$ is not a rational number.	(8 marks)
e) Find the negation of $P \Rightarrow Q$ and hence or otherwise find the negation of the statement	
He is rich and unhappy	(7 marks)
f) Draw a Venn diagram to illustrate $A \cup (B \cap C)$	(3 marks)
QUESTION TWO (20 MARKS)	
a) Using the universal set $U = \{a, b, c, d, e, 1, 2, 3, 4, 5\}$, set $A = \{1, 2, 3\}$ and	1
set $B = \{a, b, c, 2, 5\}.$	
i) Prove that $(A \cap B)^C = A^C \cup B^C$	(5 marks)
ii) Prove that $(A \cup B)^C = A^C \cap B^C$	(5 marks)
b) Write the converse, inverse and contrapositive statements of the following statement:	
'If triangles are similar, then they are concurrent.'	(6 marks)
c) Distinguish between a tautology and a contradiction.	(4 marks)
QUESTIN THREE (20 MARKS)	
a) Test the validity of the following argument:	(6 marks)
If a person is poor, he is unhappy	
If a person is unhappy, he dies young	
∴ a poor person dies young.	
b) Prove that the following argument is a fallacy:	(6 marks)
If I drive to work, I arrive early.	
I did not drive to work.	

\therefore I did not arrive early.

c) Prove by mathematical induction that

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
 (8 marks)

QUESTION FOUR (20 MARKS)

- a) Describe the conditions necessary for a function f to be regarded as:
 - i) Onto/ surjection (2 marks)
 - ii) One-to-one / injection (2 marks)
 - iii) Bijection / one-to-one correspondence (2 marks)
- b) What are the three necessary conditions for a relation to be called an equivalence relation? (3 marks)
- c) Find the domain and the range of the equation $y = \frac{1}{(x+1)(x-3)}$; $-1 \le x \le 3$ Is the equation above a relation or a function? (5 marks)
- d) Show that $n^3 + 2n$ is divisible by 3 for every positive integer *n*. (6 marks)

QUESTION FIVE (20 MARKS)

- a) A test has 5 questions in Section A and 3 questions in Sections B. A student has to choose any 3 questions and 2 questions from sections A and B respectively and aswer the questions in any order. Find how many ways the student
 - iv) Can choose the questions to answer (4 marks)
 - v) Can order the questions she answers (3 marks)
- b) Find the negation of $P \Rightarrow Q$ and hence or otherwise find the negation of the statement *He is rich and unhappy* (7 marks)
- c) Given f(x) = 2x + 1 and $g(x) = 2x^2 + 1$
 - i) Find fog(x) (3 marks)
 - ii) Evaluate fog(-3) (3 marks)