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QUESTION ONE (30 MARKS) 

a) Find the eigen values and the associated eigen vectors for the matrix                  [4 Marks] 

𝐴 = [
 0.5 2

1 1.5 
] 

b) i) State cramer’s rule                                                                                              [2 Marks]   

ii) Solve the system 𝐴𝑥 = 𝑏 using cramer’s rule                                                   [4 Marks]   

𝑥1 + 4𝑥2 + 3𝑥3 = 10 

2𝑥1 + 𝑥2 − 𝑥3 = −1 

3𝑥1 − 𝑥2 + 𝑥3 = 11 

c) i) Define an inconsistent system.                                                                           [2 Marks] 

ii) Find the solution of the set  𝑥1 − 4𝑥2 + 7𝑥3 = 6                                             [3 Marks] 

d) i) Define the adjoint of a given matrix 𝐴                                                               [2 Marks]                                                                                                          

ii) Find the adjoint of                                                                                             [4 Marks]                                                                                                          

𝐴 = [
2 5 3
3 1 2
1 2 1

] 

e) Reduce the following matrix to upper triangular form                                          [4 Marks] 

[
1 2 3
2 5 7
3 1 2

] 

 

f) Calculate the area of a triangle whose vertices are  𝐴(3,0), 𝐵(6,6), 𝐶(12,9) and briefly 

comment on your answer.                                                                                     [4 Marks]  
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g) Find the trace of the matrix.                                                                                   [3 Marks] 

[

−3 21 0 3
0 15 6 3
3 0 3 6
0 12 12 24

] 

                              

 

QUESTION TWO (20 MARKS) 

a) Use Gauss elimination method to solve.                                                                [5 Marks] 

𝑥 − 2𝑦 + 3𝑧 = 1 

𝑥 + 𝑦 + 4𝑧 = −1 

2𝑥 + 5𝑦 + 4𝑧 = −3 

b) i) Consider the vectors  𝑢
~

= (2, −6,14) and 𝑣
~

= (16, −4, −4).  Find 𝑢
~

∙ 𝑣
~

 and the angle 

between them.                                                                                                        [4 Marks] 

ii) Comment on your answer in b(i).                                                                    [1 Marks] 

c) Let  𝑢
~

= (1,2, −1)  and 𝑣
~

= (6,4,2)   be vectors in ℝ3 , Show that  𝑤
~

= (9,2,7)  is a 

linear combination of 𝑢
~

  and 𝑣
~

.                                                                              [5 Marks] 

d) State the Cauchy-Schwartz inequality for the inner product and verify it for the vectors 

 𝑢
~

= (3,1)  and 𝑣
~

= (−1,2) using Euclidean inner product.                                 [5 Marks]     

     

QUESTION THREE (20 MARKS) 

a) Let  𝑇: ℝ3 → ℝ3  be a linear operator defined by 𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 2𝑦 − 𝑧,   𝑦 + 𝑧, 𝑥 +

𝑦 − 2𝑧).  Find the basis and dimension of  
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i) 𝐾𝑒𝑟(𝑇) 

ii) 𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑇                                                                                                       [6 Marks] 

b) Solve by Gauss-Jordan elimination.                                                                       [6 Marks] 

𝑥1

2
− 2𝑥2 − 𝑥3 =

21

2
 

𝑥1 +
𝑥2

2
+ 𝑥3 =

3

2
 

3

2
𝑥1 + 𝑥2 −

𝑥3

2
= 1 

c) Find the characteristic polynomial of matrix 𝐴 given by                                       [4 Marks] 

𝐴 = [
4 3 1
2 1 −2
1 2 1

] 

d) Transform  [
1 3 3
2 4 10
3 8 4

]   into a unit matrix.                                                         [4 Marks] 

 

QUESTION FOUR (20 MARKS) 

a) State the Cayley-Hamilton theorem and use it to find the characteristic equation the 

matrix                                                                                                                     [6 Marks] 

𝐴 = [
2 −1 1

−1 2 −1
1 −2 2

] 

b) Determine whether or not the following sets of point are collinear                       [4 Marks] 

i) (1,2)  (3,4)  (5,6) 

ii) (1,0)  (1,1)  (3,3) 
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c) Let 𝑉 = ℝ3 with standard operations and  𝑆 = {(1,2,3), (0,1,2), (−2,0,1)} ≤ ℝ3.  Does 𝑆  

span  𝑉.                                                                                                                   [4 Marks] 

d) i) Define the term diagonalizable matrix.                                                              [2 Marks] 

ii) Show that  𝐵 = [
2 −3
1 1

]  is not diagonalizable.                                               [4 Marks] 

 

                                                       QUESTION FIVE (20 MARKS) 

a) Given                                                                                                                      [6 Marks] 

             𝐴 = [
1 2 3
3 −1 1
4 2 1

]    𝑋 = [
𝑥
𝑦
𝑧

]  and 𝐶 = [
1
2
3

] 

By use of co-factor method solve for 𝑥, 𝑦, 𝑧, given  𝐴𝑋 = 𝐶 

b) Find the angle between two vectors 𝑢
~

= (3, 2, −1)  and 𝑣
~

= (2,2,3) by using the  

i) Euclidean inner product                                                                                      [2 Marks] 

ii) Inner product given by  〈𝑢, 𝑣〉 = 2𝑢1𝑣1 + 3𝑢2𝑣2 + 𝑢3𝑣3                                [4 Marks] 

c)  Find the rank of  𝑀 = [

1 0 3 0 4 0
2 1 7 0 10 1
1 0 3 2 6 4
1 0 3 0 4 0

]                                                   [4 Marks] 

d) Given  𝑢
~

= (1, 0, −2)  and 𝑣
~

= (−3, 5, 1). Find the orthogonal projection of  𝑢
~

  on 𝑣
~

  

and the component of vector 𝑢
~

  orthogonal to 𝑣
~

.                                                   [4 Marks] 

e) Show that the determinant of a second-order matrix with identical row is           [2 Marks] 

zero. 


