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INSTRUCTIONS

1. Do not write anything on this question paper.
2. Answer question ONE and any other TWO questions.

QUESTION ONE (COMPULSORY) 30MKS

a)

b)

c)

d)
e)

Given that A = (2x2y — xY)i + (e — ysinx)j + (x2cosy)k. Find % at (1,1)
(3mks)
Determine the curl of vector F at the point (2, 0, 3) given that F = ize¥ + j2xzcosy +

x+2y)k. (4mks)
Show that the curl of (—yi + xj) is a constant vector (3mks)
Giventhat ¢ = x2sinz + z &Y, find the value of |grad ¢| at point (1,3,2) (3mks)
If A =xzi+xyj + y?zk and B = yz2i + xzj + x2zk. Determine the expression for
grad (A.B) at (1,1,1) (4mks)

f) A particle moves in space so that at time t its position is stated as x = 2t + 3,y = 2t +

9)

h)

3t,z = t3 + 2t2. Find the component of velocity in the direction 2i + 3j + 4k (4mks)
If If F = x2y2i + y3zj + z2k. Evaluate [

[o

i

""" F.dr along the curve x = 2u?, y =

3uand z = u3 between A(2,—3,—1)and B(2,3,1) (5mks)
Find the directional derivative of @ = x?y — 2xz? + y?2z at the point (1,3,2) in the
direction of the vector a = 3i + 2j — k (4mks)
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QUESTION TWO  (20MKS)
a) Given the vectors A = 2i 4+ 3j + 5k and B = —i + 4j + 6k, C = 2i + 4j — 3k determine

i) A unit vector perpendicular to Aand B

ii) the magnitude of (A x B) x C (10mks)
b) Afield ¢ = 1+ 2xy + x2 — y? + z exists in a region of space. Determine, at point (1, -1, -2):
i) Grad @
ii) Divgrade

iii)the directional derivative of ¢ in the direction of the vector A=i+ 2j — 2k (10mks)

QUESTION THREE (20MKS)

e

a) If F= (x%y)i+ yzj — 2yzk . Evaluate [ F.dr from (0,0,0) to (4,2,1) along

C

the path given by x =4t , y = 2t? and z = t3 (6mks)

b) A fluid motion is given by Vv = (y + z)i + (z + x)j + (x + y)k.Show that the
motion is irrotational and hence find the velocity potential (8mks)

¢) If F=2i+4uj+u’k and G =u?i—2uj+ 4k Find [ (F x G)du (6mks)

QUESTION FOUR (20MKS)

a) Show that ¥ = e *(c,cos2tc,sin2t) where c;and c, are constant vectors is

2
a solution to the differential equation % + 2 % +5r=0 (6mks)
b) Ifa force F= 2x?yi + 3xyj displaces a aparticle in the x-y plane from (0,0) to
(1,4) along a curve y = x2 . Find the work done (6mks)

c) Use divergence theorem to evaluate the [ F.f ds whereF = (3x — 22)i —
(2x+y)j+ (y? + 2z)k and S is the surface of the sphere with centre at
(1,2,4) radius 4 units (8mks)

QUESTION FIVE (20MKYS)

a) If ¥ =xi+yj+zk, showthat V2(r™) = n(n— 1)r" 2 (6mks)
b) 1) state stokes theorem (2mks)

ii) Use stock’s theorem to evaluate [ [(2x — y)dx — (yz?)dy — (y?z)dz] where S is
the upper half of the sphere x2 + y? + z2 = 1 and C is boundary of the sphere (6mks)

¢) Verify the Green’s theorem in the plane for ¢ "[(3x — 8y?)dx + (4y — 6xy)dy]

C

where C is the square formed by lines x = +1,y = +1 (6mks)
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