

### UNIVERSITY EXAMINATIONS FOURTH YEAR EXAMINATION FOR THE AWARD OF THE DEGREE OF BACHELOR OF SCIENCE IN RENEWABLE ENERGY FIRST SEMESTER 2022/2023 [SEPTEMBER-DECEMBER, 2022]

### PHRE 411: WIND ENERGY II

#### STREAM: Y4S1

TIME: 2 HOURS

#### DAY: THURSDAY, 12:00 - 2:00 PM

DATE: 22/12/2022

**INSTRUCTIONS** 

1. Do not write anything on this question paper.

2. Answer Question ONE and any other TWO Questions.

### **QUESTION ONE [30 MARKS]**

- a. If you wish to closely examine wind data from selected stations, state five attributes about the data that you should determine. [5marks]
- b. Briefly discuss the following terms as used in the data validation process; data screening and data verification. [2marks]
- c. Estimate the annual energy production (AEP) for a wind turbine with a rotor diameter of 60 m in a region with 450 W/m<sup>2</sup>. Assume the CF is 0.40.
- d. State three reasons why rotor speed must be controlled. [3marks]
- e. The speed control requirement of the rotor has five separate regions. In brief, discuss the regions.
   [5marks]
- f. What is the difference between cut-in and cut-out wind speed in wind turbine technology? [2marks]
- g. What do you understand by the word 'rated speed?' [1mark]
- h. Why are wind turbines on tall towers? [1mark]
- i. What are the two differences between drag and lift devices? [2marks]
- j. Besides being nondepletable, name any other three advantages of wind power. [3 marks]

k. Show how to determine the tip speed ratio of a wind turbine and state its importance.[2 marks]

## QUESTION TWO [20 MARKS]

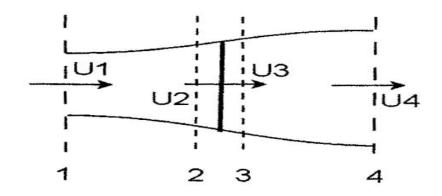
In an experiment to find how wind picks from one height to another, the following data was collected.

| Height | Hourly wind speeds (m/s) |      |      |      |      |      |
|--------|--------------------------|------|------|------|------|------|
| (m)    | 12:00                    | 1:00 | 2:00 | 3:00 | 4:00 | 5:00 |
| 20     | 4.0                      | 5.0  | 7.0  | 12.0 | 3.0  | 6.0  |
| 60     | 3.5                      | 4.6  | 6.4  | 11.7 | 2.7  | 5.5  |

Using the information above and applying the appropriate method;

a. Calculate the wind power density per unit area for the site at the 20m hub height. (Assume an air density of 1.225kg/m<sup>3</sup>). [4 marks]

- b. The turbulence intensity at the 20m hub height. [5 marks]
- c. The wind shear exponent of the site [4 marks]
- d. Surface roughness parameter.
- e. The Average wind speed at a height of 100m above the ground. [3 marks]


[4 marks]

# **QUESTION THREE [20 MARKS]**

- a. Discuss the 6 main components of a windmill. [6 marks]
  b. The turbine blade operates on a two-principle design. State and explain the designs stating which of the two is well suited for electricity generation and why. [6 marks]
- c. With the help of well-labelled diagrams, discuss the following schemes as used in wind power systems for maximum energy capture; [8 marks]
  - i. Constant TSR schemes.
  - ii. Peak-Power-Tracking scheme.

# **QUESTION FOUR [20 MARKS]**

a. Using the stream tube control set-up below, show that the Betz limit ( $C_{Max}$ ) is  $\approx 0.5926$ . [12 marks]



- b. Name three main aerodynamic effects that reduce the efficiency (C<sub>P</sub>) of real wind turbines.
   [3marks]
- c. Name any three factors that determine the efficiency of a wind power conversion machine. [3marks]
- d. state any two assumptions made while determining the Betz limit. [2marks]

## **QUESTION FIVE [20 MARKS]**

- a. State three reasons why the armature voltage  $E_A$  is not equal to the output voltage  $V_{\phi}$  in a synchronous machine. [3 marks]
- b. State three quantities that must be determined to describe the generator model [3marks]
- c. A 200KV, 480V, 50HZ, Y-connected synchronous generator with a rated field current of 5A was tested and the following data was obtained;
  - i.  $V_{T,OC} = 540V$  at the rated  $I_F$
  - ii.  $V_{L,SC} = 300A$  at the rated  $I_F$

When a DC voltage of 10V was applied to two of the terminals, a current of 25A was measured. Find the generator's model at the rated conditions. (i.e., the armature resistance and the approximate synchronous reactance) [8marks]

d. With the aid of a diagram, discuss the Doubly Fed Induction Generator (WECS) with Reduced Capacity Power. [6marks]