

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF THE **DEGREE OF BACHELOR OF SCIENCE IN BIOMEDICAL SCIENCES FIRST SEMESTER, 2021/2022** (FEBRUARY - JUNE, 2022)

BMED 317: BASIC BIOPHYSICS

STREAM: Y3 S1

DAY: THURSDAY, 2:00 - 5:00 P.M.

TIME: 3 HOURS DATE: 12/05/2022

INSTRUCTIONS

1. Do not write anything on this question paper.

2. Answer question ONE and any other TWO questions.

QUESTION ONE

a) W	ith the help of a diagram describe a black body is	[3 marks]
b)	State and explain Planck's quantum hypothesis	[3 marks]
C)	Explain the First law of thermodynamics	(3 marks)

d) In the compression stroke of a gas engine the work done on the gas by the piston is 120kJ/Kg and the heat rejected to cooling water is 90 kJ/Kg. Calculate the change of specific internal energy stating whether it is a gain or a loss. [3 marks]

e) Calculate the de Broglie wavelength for an electron whose speed is 2.5×10^8 ms⁻¹. [3 marks]

f) Based on the Bohr's model of the atom, explain the equation $hf = E_2 - E_1$

[3 marks]

- g) Explain the application of sedimentation in biological research. [3 marks]
- **h**) Distinguish between enthalphy and entropy. [3 marks]

Light of frequency 5.25×10^{14} HZ is made to strike a surface whose work j) function is 3.5ev. Show that photoelectric effect will not take place. (h= 6.6 X 10³⁴Js) [3 marks]

i) Differentiate between lamina flow and turbulent flow.

QUESTION TWO (20 MARKS)

Discuss the role of synapses in the human sensory system [10 marks] a) a) Write short notes about: (i) Simple diffusion [3marks] (ii) Facilitated diffusion [4 marks] Active transport [3marks] (i)

QUESTION THREE (20 MARKS)

a) Define stochastic and deterministic effects of ionising radiation, giving an example of each effect. [5 marks]

b) Define and describe consequential late effects in normal tissues after radiation therapy

[5 marks]

[5 marks]

[10 marks]

List the treatment factors that can affect the development of a consequential late c) effect.

Distinguish between strong and weak forces found in the biological systems. [5 marks]

QUESTION FOUR (20 MARKS)

Using relevant equations show how the sedimentation velocity method a) works. [10 marks]

b) Explain isoelectric focusing.

d)

[3 marks]

QUESTION FIVE (20 MARKS)

(a) Distinguish between isotones and isotopes	[2 marks]	
(b) Write a decay equation for the following;		
(i) Sodium 24 (²⁴ Na) decaying to give Magnesium 24 (²⁴ Mg) neutrino (7 for No $=$ 11)	by emitting a β -	
(ii) Radium-226 (226 Ra) decaying to radon-222 (222 Rn) by ar	emission of an	
alpha by an emission of an alpha particle (Z for $Ra = 88$)	[2 marks]	
(c) i) What is half of half life of a radioactive substance?	[1 mark]	
ii) Starting from the fact that the rate decay of radioactive nuclide is $dN/N = - \Box dt$,		
where N_0 is the original number of nuclide, dN is the change in the number		
of nuclide and \Box is rate of decay of nuclide, s how that at a decaying sample of nuclides	time = $t_{1/2}$ for a	
λ =0.693/ t _{1/2}	[4 marks]	
iii) Calculate the fraction of a radioactive sample that decays in 5 days if the		

iii) Calculate the fraction of a radioactive sample that decays in 5 days if the substance has a half-life of 2.5 days [4 marks]