KISII UNIVERSITY SCHOOL PURE AND APPLIED SCIENCES DEPARTMENT MATHEMATICS AND ACTUARIAL SCIENCE COURSE TITLE:ELEMENT OF RISK AND INSURANCE COURSE CODE: BACS 120 FINAL EXAM APRIL 2021 INSTRUCTIONS:Answer question one and any other 2 questions in section B

SECTION A (30 marks)

Question One (30 marks)

(a) The Gamma distribution with mean μ and variance $\frac{\mu^2}{\alpha}$ has density function

$$f(y) = \frac{\alpha^{\alpha}}{\mu^{\alpha}\Gamma(\alpha)} y^{\alpha-1} e^{-\frac{y\alpha}{\mu}} \qquad (y > 0)$$

Show that this may be written in the form of an exponential family. (5mks)

(b) Prove that given $\frac{G'(S)}{G(s)} = \frac{(a+b)}{1-as}$ it follows Geometric distribution distribution. (5mks)

- (c) Consider a zero-coupon corporate bond that promises to pay a return of 10% next period. Suppose that there is a 10% chance that the issuing company will default on the bond payment, in which case there is an equal chance of receiving a return of either 5% or 0%.
 - (i) Calculate values of downside semi-variance and shortfall probability based on the risk-free rate of return of 6% (5mks)

(d) The entries for age 60 in a multiple decrement table with decrements for death and retirement are as follows: If $q_{62}^d = 9,000$, $q_{61}^d = q_{60}^d$ and decrements operate

Age	$(al)_x$	$(ad)_x^d$	$(ad)_x^r$
60	10,000	200	400

uniformly over the year of age in the multiple decrement table, calculate the value of q_{61}^r . (5mks)

(e) The number of claims on a portfolio of washing machine insurance policies follows a Poisson distribution with parameter 50. Individual claim amounts for repairs are a random variable 100X where X has a distribution with probability density function

$$f(x) = \begin{cases} \frac{3}{32}(6x - x^2 - 5) & \text{if } 1 < x < 5 \\ 0 & \text{otherwise} \end{cases}$$

(i) Calculate the mean and variance of the total individual claim amounts. (7mks)

(ii) Calculate the mean and variance of the aggregate claims . (3mks)

SECTION B

Question Two (20 marks)

(a) A multiple decrement table is subject to 3 modes of decrement: α , β and γ . You are given the following extract from the table:

Age, x	$(al)_x$	$(ad)_x^{\alpha}$	$(ad)_x^\beta$	$(ad)_x^{\gamma}$
50	5,000	86	52	14
51	4,848	80	56	20

(i) Calculate the probability that a 50-year old leaves the population through decrement γ between the ages of 51 and 52. (3cm)

- (ii) Assuming that each decrement is uniformly distributed between integer ages in the multiple decrement table, calculate the independent probabilities q_{50}^{α} and $_{1|}q_{50}^{\alpha}$ (3mks)
- (b) The loss function under a decision problem is given by:

	θ_1	θ_2	θ_3
d_1	14	12	13
d_2	13	15	14
d_3	11	15	5

Determine the minimax solution to this problem.

(4mks)

(c) An investor is contemplating an investment with a return of *R*, where:

$$R = 250,000 - 100,000N$$

and N is a Normal [1,1] random variable. Calculate each of the following measures of risk:

(i)	Vari	ance o	fre	turn ai	nd dov	vnsid	e se	mi-varia	ance of return	(5mks)

(ii) Shortfall probability, where the shortfall level is 50,000 (5mks)

Question Three (20 marks)

(a) A market trader has the option for one day of selling either ice-cream (d₁), hot food (d₂) or umbrellas (d₃) at an outdoor festival. He believes that the weather is equally likely to be fine (θ₁), overcast (θ₂) or wet (θ₃) and estimates his profits under each possible scenario to be:

	θ_1	θ_2	θ_3
d_1	25	19	7
d_2	10	30	8
d_3	0	2	34

Determine the minimax solution to this problem.

(b) Use change of variable technique given

$$f(x) = \frac{\alpha}{x_0} \left(\frac{x_0}{x}\right)^{\alpha + 1} \qquad x > x_0$$

and $x = x_0 e^y$ to find the distribution g(y)

(6mks)

(5mks)

- (c) List the four main perils typically covered by employer s liability insurance. (4mks)
- (d) An investor is considering investing in one of two assets. The distribution of returns from each asset is shown below:

A	sset 1	Asset 2		
Return (%)	Probability (%)	Return (%)	Probability (%)	
-1	$8^{1}/_{3}$	0	50	
11	$91^{2}/_{3}$	20	50	

Calculate for each asset, the variance, semi-variance and shortfall probability where necessary assume a benchmark return of 0%. (5mks)

Question Four (20 marks)

(a) The loss function for this decision is shown below:

	d_1	d_2	d_3
θ_1	0	5	8
θ_2	12	0	3
θ_3	20	15	0

Determine the minimax solution when assigning an applicant to a category. (3mks)

- (b) List the main perils insured against under a household buildings policy. (2mks)
- (c) Using the exponential family distribution constructed in question 1(a) use the properties of exponential families to confirm that the mean and variance of the distribution are μ and $\frac{\mu^2}{\alpha}$. (5mks)
- (d) Proof that

$$\beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

showing the relationship between β and Γ

(e) Use cumulative distribution technique given

$$f(x) = \frac{\alpha}{x_0} \left(\frac{x_0}{x}\right)^{\alpha + 1} \quad x > x_0$$

and $x = x_0 e^y$ to find the distribution g(y)

(5mks)

(5mks)

Question Five (20 marks)

(a) Claim sizes (in suitable units) for a portfolio of insurance policies come from a distribution with probability density function

$$f(x) = \begin{cases} axe^{-x^2} & \text{if } 0 < x < 2, \quad a > 0\\ 0 & \text{otherwise} \end{cases}$$

Find the value of *a*

(b) The loss function under a decision problem is given by:

	θ_1	θ_2	θ_3
d_1	11	9	19
d_2	10	13	17
d_3	7	13	10
d_4	16	5	13

State which decision can be discounted immediately and why then determine the minimax solution in this case. (5mks)

(c) Prove that
$$\frac{G'(S)}{G(s)} = \frac{(a+b)}{1-as}$$
 follows Poisson distribution. (5mks)

(d) Explain different types of risk

(5mks)

(5mks)