

UNIVERSITY EXAMINATIONS

SPECIAL EXAMINATION

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE IN BACHELOR OF SCIENCE IN MATHEMATICZ & COMPUTING FIRST SEMESTER 2021/2022

(JULY, 2022)

MATH 111: CALCULUS 1

STREAM: Y1 S1 TIME: 2 HOURS

DAY: WEDNESDAY, 8.00 AM - 10.00 AM DATE: 20/07/2022

INSTRUCTIONS:

1. Do not write anything on this question paper.

2. Answer Question ONE (Compulsory) and any other TWO Questions.

QUESTION ONE (30 marks)

a) If
$$x = \cos t$$
 and $y = 1 - \sin 2t$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ (4marks)

b) State thre conditions for a function to be continuous at a point x = a (3marks)

c) Find
$$\frac{dy}{dx}$$
 if $y = e^{3x}(\sin 2x)$ (3marks)

d) Find
$$f'(x)$$
 for $f(x) = x^2 + 4x - 7$ from first principle (4marks)

e)

f) Investigate the nature of the turning point of the curve $y = 3x^2 + 6x^2 - 15x + 51$

i) Locate the turning point (5marks)

ii) Determine the nature of the turning point

g) Find the equation of the tangent and the normal to the curve $y = x^3 - 2x^2 + 3x - 1$ at the point P(2,5). (6marks)

h) Evaluate the limit $\lim_{x\to 0} \frac{\sin(3x)}{\sin(8x)}$ (5marks)

QUESTION TWO (20 marks)

- a) Find f'(x) given that $f(x) = \log_3 \sin(2x^2 + 5)$ (5marks)
- b) A 15m ladder is placed to rest against the wall so that the bottom is 10m away from the wall. If the ladder is pushed towards the wall at a rate of 0.25m per sec. Determine how fast is the top of the ladder moving up the wall at t = 12 sec.

(7marks)

- c) find $\frac{dy}{dx}$ if xy + ln(x + y) = 1 (5marks)
- **d**) find $\frac{dy}{dx}ify = \cos(\cos x)$

(3marks)

QUESTION THREE (20 marks)

a) Find from the first principles, the derivative of the functions

(6marks)

i.
$$f(x) = \sin x$$

ii.
$$f(x) = \sqrt{x+2}$$

b) Find the derivatives of the following functions using appropriate methods

i)
$$y = \frac{x^2 + 3x - 4}{2x + 1}$$
 (4marks)

ii)
$$y = \cos(5x^3)$$
 (3marks)

c) Differentiate the implicit function;

d)
$$x^2 + 2y^3$$
 (4 marks)

e)
$$find \frac{dy}{dx} if y = \cos(\cos x)$$
 (3marks)

QUESTION FOUR (20 marks)

- a) Given the function $g(y) = \begin{cases} y^2 + 5 & if y < -2 \\ 1 3yif y \ge -2 \end{cases}$. Compute the $\lim_{y \to -2} g(y)$ (5marks)
- b) At what point does the tangent to the function $y = x^3 + 2x^2$ have a slope of zero. (6marks)
- c) Given that $P = 3q^4 4q^2 + 3$; $\frac{d^3p}{dq^3}$ (4marks)
- d) A church window with rectangular bottom and a semi-circular top is build using a 12m framing material. Determine the dimensions of the window to let in most light.

(5marks)

QUESTION FIVE (20 marks)

e) The amount of air in a balloon at any time t is given by $V(t) = \frac{6\sqrt[3]{t}}{4t+1}$. Determine if the balloon is being drained or being filled with air at t = 8.

(4marks)

f) Evaluate the derivative of the function $f(t) = \frac{t}{1+t}$ from the first principles

(4marks)

g) Differentiate $y = \tan^{-1} 3x^2$

(4marks)

a) **Eva**luate : $\lim \frac{\tan 2x}{x}$

(4marks)

i. The parametric equation of the curve are $x = e^t$ and $\sin t$. Find $\frac{dy}{dx} \frac{d^2y}{dx^2}$ (4marks)