KISII UNIVERSITY

THIRD YEAR EXAMINATION FOR THE AWARD OF THE DEGREE OF BACHELOR OF SCIENCE

JANUARY- APRIL, 2020

MATH 191: ENGINEERING MATHEMATICS II

STREAM: Y2S2

TIME: 2 HOURS

Instructions

- Question **ONE** is compulsory
- Attempt any other two questions from the remaining four questions.
- Question 1 carries **30 marks** while each of the others carries **20 marks**

QUESTION ONE

a) Resolve the following into partial fractions: 6r - 5

$$\frac{6x^2}{(x-1)(x^2+3)}$$

(3 marks)

b) Given the system of equations:

$$-3x_1 + 7x_3 = 4x_1 + 2x_2 - x_3 = 05x_1 - 2x_2 = 3$$

Use Cramer's rule to solve the system.

- (3 marks)
- c) Find the first 6 terms of the Taylor series for $\ln x$ about the point x = 2. (4 marks)
- **d)** From Einstein's theory of special relativity, it is known that the mass of an object is a function of its speed ν . This relationship is given by

$$n = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$

By considering the case when $\frac{v^2}{c^2} \ll 1$, provide a binomial power series approximation for the mass *m* of the object. (3 marks)

- e) Use Maclaurin's power series to evaluate $\frac{1}{4}(x^2 1)xe^{2x}$ as far as the term in x^7 . (4 marks)
- f) (a) Find the projection of the vectors $\vec{P} = 3i j + 5k$ and $\vec{Q} = -6i + 2j + 2k$. (2 marks)

(b) If the vectors $\vec{a} = 2i - 3j$ and $\vec{b} = -6i + mj$ are collinear, find the value of *m*. (2 marks)

g) Evaluate
$$\lim_{x\to\infty} \left(\frac{1-\cos x}{x^2}\right)$$
 (3 marks)

- **h)** Use De Movre's theorem to evaluate z^5 where $z = -2 + i\sqrt{5}$. (2 marks)
- i) Evaluate $\int_0^{\frac{\pi}{2}} 3x^2 Cos(\frac{1}{2}x) dx$, using Bernoulle's integral method. (4 marks)

QUESTION TWO

a) Given the following function, find y'''.

$$y(x) = \frac{x}{b}\sqrt{(a-x)x^2}$$

(5 marks)

(5 marks)

(2 marks)

b) Find y'' if $y = \frac{1}{2} \tan(4x)$

c) Given
$$z_1 = -2 + i\sqrt{3}$$
 and $z_2 = 3 - i\sqrt{3}$, determine $|z_1 - z_2|^2$

d) Resolve the following into partial fractions:

$$\frac{3x^2 + 16x + 15}{(x+3)^3}$$

(3 marks)

e) Find the eigen values that satisfy the following matrix equation.(**3marks**)

$$\begin{vmatrix} (2-\lambda) & -2 \\ 1 & (5-\lambda) \end{vmatrix} = 0$$

f) Use integration by parts to evaluate the integral:

$$\int_{1}^{2} \frac{1}{5} (\ln x) x^{3} dx$$

(2 marks)

OUESTION THREE

a) Given that z is a complex number, determine the polar form of

$$z = ln(3 - 7i)$$

(3 marks)

b) The forces in three members of a framework are F_1, F_2 , and F_3 . They are related by the following simultaneous equations:

 $1.4F_1 + 1.8F_2 + 2.8F_3 = 5.6$ $4.2F_1 - 1.4F_2 + 5.6F_3 = 35.0$ $4.2F_1 - 2.8F_2 - 1.4F_3 = -5.6$

Find the values of F_1 , F_2 , and F_3 using Gaussian elimination. (5 marks)

Resolve the following into partial fractions then evaluate the integral C)

$$\int_{2}^{3} \frac{x^3 - 2x^2 - 4x - 4}{x^2 + x - 2} dx$$

(5 marks)

(2 marks)

(4 marks)

d) (i) Prove that the vectors $\vec{W} = 3i - j + 5k$ and $\vec{U} = 3i - j + 5k$ are perpendicular. (2 marks)

(ii) Given the vectors $\vec{A} = i + 2j - 5k$ and $\vec{B} = 2i + j - 2k$, find $\vec{B} \times \vec{A}$.

e) Use Taylor theorem to expand sin(x + a) in ascending powers of x as far as the term with x^4 . Hence determine $sin(43^0)$. (3 marks)

- **QUESTION FOUR a)** Find the roots of $(5 + 3i)^{\frac{1}{2}}$ to 4 significant figures (3 marks)
- **b)** Evaluate $\iint_{1}^{2} 4(x^{3} x^{-2}) dx$
- c) The velocity v of point P on a body with angular velocity ω about a fixed axis is given by

$$\vec{v} = \vec{\omega} \times \vec{r}$$

Where r is point on vector \vec{P} . Find \vec{v} given that at point P, $\vec{\omega} = 2i - 5j + 7k$ and $\vec{r} = \mathbf{i} + 3\mathbf{k}$, where $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are unit vectors. (4 marks)

d) The following system of equations is designed to determine concentrations (the c's in g/m^3) in a series of coupled reactors as a function of the amount of the mass input to each reactor (the right-hand sides in g/day).

$15c_1 - 3c_2 - $	$c_3 = 4000$
$-3c_1 + 18c_2 -$	$6c_3 = 100$
$-4c_1 - c_2 + 2$	$12c_3 = 2350$

(i) Determine the matrix inverse

(2 marks)

(2 marks)

- (ii) Use the inverse to determine the solution of the system to determine the solution for system (3 marks)
- e) Find the maximum value of each of the following curves:
 - (i) $y = 4x 2x^2$ (2 marks) (ii) $y = \frac{1}{x}(\ln x)$ (2 marks)

QUESTION FIVE

- **a)** Change $z = 3e^{2-3i}$ into the Cartesian form, z is a complex number.
- **b)** When the displaced electrons oscillate about an equilibrium position, the displacement x is given by the equation

$$x = A \exp\left[\frac{-ht}{2m} + i\frac{\sqrt{(4mf - h^2)}}{2ma} t\right]$$

Determine the real part of x in terms of t assuming $(4mf - h^2)$ is positive. (3 marks)

c) Given $\vec{p} = 6i + 4k$, $\vec{q} = 8i - 4j + 6k$ and $\vec{r} = 6i + 10j - 8k$, determine:

- (i) $-\vec{p} + 3|\vec{r}|$ (2 marks)
- (ii) $(\vec{q} 3\vec{p}) \cdot \frac{1}{2}\vec{r}$ (2 marks)
- (iii) $(\vec{r} + \vec{p}) \times \frac{1}{2}\vec{q}$ (2 marks)
- **d**) Find the eigen values λ that satisfy the following equation

$$\begin{vmatrix} (5-\lambda) & 7 & -5 \\ 0 & 4-\lambda & -1 \\ 2 & 8 & -3-\lambda \end{vmatrix} = 0$$

(3 marks)

f) The tensions T_1, T_2 , and T_3 in a simple framework are given by the following equations:

$$5F_1 + 5F_2 + 5F_3 = 7.0$$

$$F_1 + 2F_2 + 4F_3 = 2.4$$

$$4F_1 + 2F_2 = 4.0$$

Use Gaussian elimination to find the values of T_1, T_2 , and T_3 . (3 marks)

e) Use integration by parts to evaluate the integral: (3 marks) $\int x(\ln x) dx$