MATH 312

UNIVERSITY EXAMINATIONS

SPECIAL EXAMINATION

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS /BACHELOR OF EDUCATION SCIENCE AND ARTS FIRST SEMESTER 2021/2022 (JULY, 2022)

MATH 312: REAL ANALYSIS 1

STREAM: Y3 S1

DAY: WEDNESDAY, 3.00 PM – 5.00 PM

INSTRUCTIONS:

Do not write anything on this question paper.
 Answer Question ONE (Compulsory) and any other TWO Questions

QUESTION ONE (30 MARKS)

(a) Define a ''bounded set'' of real numbers	(2marks)
(b) (i) What is a null sequence	(1mark)
(ii) Suppose $y_n \to l$ as $n \to \infty$ and $z_n \to l$ as $n \to \infty$. If $y_n \le x_n \le z_n$,	
prove that $x_n \to l$ as $n \to \infty$.	(4marks)
(c) Prove that for any number $x \in \mathbb{R}$, $- x \le x \le x $	(3marks)
(d) Prove that $\sqrt{3}$ is irrational.	(5marks)
(e) Prove that between any two rational numbers there is another rational number.	(4marks)
(f) Use mathematical induction to prove that $10^{2n-1} + 1$ is divisible by 11	
for all $n \in \mathbb{N}$	(5marks)

TIME: 2 HOURS

DATE: 20/07/2022

(g)(i) If $a, b, c \in \mathbb{R}$, Prove the following property of an ordered field:

$$a + b = c + b$$
 implies $a = c$. (2marks)

(ii) Show that -(-y) = y, $\forall y \in \mathbb{R}$ (4marks)

QUESTION TWO

- (a) (i) Define the term 'Supremum' for a set of real numbers. (1mark)
 - (ii) Show that the Supremum of a set of real numbers (if it exists) is unique. (5marks)
 - (iii) Distinguish between 'Infimum' and 'minimum' values of a set of real numbers.

(2marks)

(b) State the completeness axiom of the set of real numbers. (21	marks)
--	--------

(c) Prove that the set of natural numbers is unbounded above. (5marks)

(d) Show that if a and b are positive real numbers, then there exist a positive integer n such that na > b. (5marks)

QUESTION THREE

- (a) (i) Let (X, d) be a metric space and $A \subseteq X$. Define a limit point of A. (2marks)
- (ii) If (X, d) is a metric space and k > 0 is a real number, show that (X, d_k)
 is a metric space where d_k(x, y) = kd(x, y) (10marks)
 (b) Define an interior point of a set A if (X, d) is a metric space. (2marks)
 (c) (i) What is meant by an open set given that (X, d) is a metric space? (2marks)
 (iii) Prove that E⁰ is always an open set (4marks)

QUESTION FOUR

(a) (i) Evaluate $\lim_{n \to \infty} \left(\frac{5n^3 - 4n}{7n^3 - 2n^2 + 6} \right)$	(2marks)
(ii) Show that $\lim_{n \to \infty} \left(\frac{4n+1}{n+2} \right) = 4$	(3marks)
(b) (i) Define a Cauchy sequence	(2marks)
(ii) show that any Cauchy sequences is always bounded.	(5marks)
(c) State and prove the Bolzano-Weirstrass theorem	(4marks)

(d) Prove that the limit of a sequence is unique.

QUESTION FIVE

(a) (i)When is a function f continuous at a point c? (2marks) (ii) Show that the function $f(x) = \begin{cases} x+2, x \ge -3 \\ 3x+8, x < -3 \end{cases}$ is continuous at x = -3 (3marks) (b) State and prove Rolle's theorem. (5marks) (c) (i) State and prove the intermediate value theorem for continuous functions. (4marks) (ii) Use the intermediate value theorem to show that the function

$$f(x) = x^2 + x - 3$$
 has a root in the interval (1,2) (3marks)

(d) Prove that $\lim_{n \to 1} 2x + 3 = 5$ using $\varepsilon - \delta$ definition. (3marks)

(4marks)