KISII UNIVERSITY

FIRST YEAR SEMESTER TWO EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE- PURE MATHEMATICS MATH 802- FUNCTIONAL ANALYSIS II

TIME- 3 HOURS

STREAM: MSC PURE MATHEMATICS

INSTRUCTIONS: Answer question one (compulsory) and any other two questions

QUESTION ONE (30 MARKS)- COMPULSORY

a) i) Define an inner product	(2mks)
ii) Show that the space \mathbb{R}^n with \langle, \rangle defined by $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$ f	or
$x, y \in \mathbb{R}^n$ is an inner product space	$(8 \mathrm{mks})$
iii) State and proof the Cauchy-Scwartz inequality	$(8 \mathrm{mks})$
b) i) Define a Hilbert space	(1mk)
ii) Let X be an inner product space and $x, y \in X$. If $x \perp y$, pr	ove that
$ x + y ^{2} = x ^{2} + y ^{2}$	$(5 \mathrm{mks})$
c) State and proof the Riesz representation theorem	$(6 \mathrm{mks})$

QUESTION TWO (20 MARKS)

a) Define the term an adjoint operator of a Hilbert space (2mks)

b) Let T be a bounded linear operator on a Hilbert space H onto itself, prove that

- i) $||T|| = ||T^*||$ (5mks)
- ii) $||T^*T|| \le ||T||^2$ (5mks)
- c) i) What is a self-adjoint operator? (1mk)

 $(7 \mathrm{mks})$

ii) Let $T: l_2(0, 1) \to l_2(0, 1)$ be defined by Tf(t) = tf(t). Show

that T is self-adjoint

QUESTION THREE (20 MARKS)

a) i) Define a normal operator (1mk)

ii) Let $T: H \to H$ be a bounded linear operator on H, Proof that T

is normal iff
$$||T^*x|| = ||Tx|| \quad \forall x \in X$$
 (7mks)

c) Let T be an operator on a Hilbert space, show that the following

statements are equivalent

- i) $T^*T = I$ (4mks)
- ii) $\langle Tx, Ty \rangle = \langle x, y \rangle$ (4mks)

iii)
$$||Tx|| = ||x||$$
 (4mks)

QUESTION FOUR (20 MARKS)

a)i) Define a reflexive space	$(1 \mathrm{mk})$
ii) Prove that every finite dimensional normed space X is reflexive	$(5 \mathrm{mks})$
b) Prove that every Hilbert space is reflexive	$(5 \mathrm{mks})$
c) i) State the Milman-pettis theorem	(1mk)
ii) Define the spectrum of a linear operator	(1mk)
iii) Prove that every compact operator is bounded	$(7 \mathrm{mks})$