KISII UNIVERSITY

TWIN TOWERS CAMPUS

EXAMINATION FOR THE DEGREE OF MASTER OF SCI-ENCE IN PURE MATHEMATICS

MATH 803- GENERAL TOPOLOGY I

STREAM- MSC YISI

TIME: 3 HOURS

INSTRUCTIONS: ANSWER QUESTION ONE COMPULSORY AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a) i) Define the term a T_1 – space	(1mk)
ii) Prove that a topological space is a T_1 – space if and only if every	
singleton subset of X is closed	$(7 \mathrm{mks})$
b) Show that a finite subset of a T_1 – space X has no accumula	tion
points	$(6 \mathrm{mks})$
c) i) What is a regular space?	(2mks)
ii) Show that every subspace of a regular space is regular	$(7 \mathrm{mks})$
d) i) Define a locally compact set	(1mk)
ii) Prove that every compact space is locally compact	$(6 \mathrm{mks})$

QUESTION TWO (20 MARKS)

a) i)What is a Hausdorff space	(1mk)
ii) Show that every subspace of a Hausdorff space is also a	
Hausdorff space	$(5 \mathrm{mks})$
b) i) Let X be a T_3 -space. Prove that X is also a Hausdorff space	$(3 \mathrm{mks})$
ii) Prove that every metric space X is always a Haursdoff space	$(5 \mathrm{mks})$
c) Use a counter example to show that a T_0 - Space is not necessar	ily
a T_1 - Space	(5mks)
d) What is a lindel f space	(1mk)
QUESTION THREE (20 MARKS)	
a) i)What is meant by a first countable space	(2mks)
ii) Show that any subspace (Y, τ_Y) of a first countable space (X, τ_Y)	τ) is
also first countable	$(11 \mathrm{mks})$
b) i) What is meant by a metrizable topological space?	(1mk)
ii) State Urysohn's metrization theorem and Tietze extension	
theorem	(4mks)
iii) State the finite intersection property	(2mks)
QUESTION FOUR (20 MARKS)	
a) i) What is a compact set	(2mks)
ii) Define a second countable space	(2mks)
iiI) Let \mathcal{G} be a base for a second countable space X. Prove that \mathcal{G}	is is
reducible to a countable base for X	$(10 \mathrm{mks})$
b) Show that every subspace of a second countable space is second	

countable

 $(6 \mathrm{mks})$