MATH 805

MATH 805: GROUP THEORY I

STREAM: Y1S1

TIME: 3 HOURS

DATE: 04/08/2022

DAY: THURSDAY, 8.00 AM – 11.00 AM

INSTRUCTIONS:

- 1. Do not write anything on this question paper.
- 2. Answer Question one (Compulsory) and Any Other TWO Questions.

QUESTION ONE (30 MARKS)- COMPULSORY

a)	i) Define a simple group.	(1 mark)	
	ii) Name any two families of simple groups	(2 marks)	
b)	i) Define a composition series and a subnormal series of a group G	(2 marks)	
	ii) Prove that every finite group Ghas a composition series	(8marks)	
	iii) Explain why the additive group of integers \mathbb{Z} does not have a composition series		
		(3 marks)	
c)	State and proof the Jordan – Holder theorem	(8 marks)	
	d) Let $(G, *)$ be a group. Prove that the identity element in G is unique	(5mks)	

QUESTION THREE (20 MARKS)

a) Let *G* be a group.

	i)	Define a lower central series of <i>G</i> .	(1 mark)	
	ii)	Define an upper central series of G.	(1 mark)	
b)	i)	Define a nilpotent group.	(1 mark)	
	ii)	Show that every nilpotent group is soluble.	(4 marks)	
	iii) By a counter example show that not all soluble groups are nilpotent (2mks)			
c)	i)	Define a <i>p</i> -group.	(2 marks)	
	ii)	Show that every <i>p</i> -group is nilpotent.	(5 marks)	
	,			
d)	S	Show that any finite <i>p</i> -group is nilpotent	(4 marks)	
QUESTION FOUR (20 MARKS)				
a)	i) D	Define a soluble group.	(2 marks)	
	ii) S	Show that if $n \ge 5$, S_n is not soluble.	(4 marks)	
b)	Let	$H\Delta G$. Show that if both H and G/H are soluble, the G is soluble.	(4 marks)	
,				
c)	i) S	how that all finite abelian groups are soluble.	(4 marks)	
	,		· /	
	ii) Show that a finite group G is soluble if it contains a normal subgroup K such that K and			
		<i>G/K</i> are soluble (6marks)		
	\mathbf{U}/\mathbf{I}		(omarks)	

QUESTION FIVE (20 MARKS)

a) i) Define what is meant by the external direct product of two groups H and K (1 mark)
ii) Show that for any groups H and K, H × K ≅K× H (4 marks)
b) Show that H × I and I × K are normal subgroups of H×K; these two subgroups generate H × K and their intersection is (l, l) (4 marks)
c) Given the group (G, +4) where G={0,1,2}. Find the generator of G (3 marks)
d) Let Z be the set of integers under the binary operation * defined by a*b=a+b+1, for all a,b∈Z. Show that Z is a group under* as defined (8 marks)