

FIRST YEAR EXAMINATION FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE APPLIED MATHEMATICS FIRST SEMESTER 2021/2022 (JUNE-SEPTEMBER, 2022)

MATH 850: FLUID MECHANICS I

STREAM: Y1S1

TIME: 3 HOURS

DAY: TUESDAY, 2.00 PM - 5.00 PM

DATE: 02/08/2022

INSTRUCTIONS:

1. Do not write anything on this question paper.

2. Answer Section A (Compulsory) and Any Other TWO Questions

SECTION A (30 MARKS)

1.

- a. Explain types of fluids, conservation laws giving examples in each case (5 marks)
- b. A perfect gas is expanded from 5 to 1 bar by the law $pV^{1.2} = C$. The initial temperature is 200^oC. Calculate the change in specific gravity. Take R = 287 J/kgK, $\gamma = 1.4(5 \text{ marks})$
- c. Explain giving the numerical definitions of the following non-dimensional numbers in fluid mechanics
 - i. Reynolds number Re (5 marks)
 - ii. Vorticity (5 marks)
- d. If the equation of a velocity profile over a plate is $v = y^3 + y$ (where v is the velocity in m/s) determine the shear stress at y =4 and at y =3.5cm. Given the viscosity of the liquid is 8.35 poise. (5 marks)
- e. The velocity components in a three-dimensional velocity field for an incompressible fluid are expressed as (5 marks)

$$u = \frac{y^3 z}{3} + 2xz - x^2 y$$
$$v = y^2 x - 2zy - \frac{x^3}{3}$$

$$w = z^2 y - 2yz - \frac{x^3}{3}$$

Show that these functions represent a possible case of an irrotational flow.(5 marks)

- 2.
- a. A plate having an area of $0.6m^2$ is sliding down an inclined plane of 30^0 to the horizontal with a velocity of 0.36m/s. There is a cushion of fluid 1.8mm thick between the plane and the plate. Find the viscosity of the fluid if the weight of the plate is 280N. (10 marks)
- b. A pitot tube is pointed into an air stream which has a pressure of 105 kPa. The differential pressure is 20 kPa and the air temperature is 20°C. Calculate the air speed.
 (10 marks)
- 3.
- a. A flow field is described by the equation $\varphi = y x^2$, Sketch the streamlines $\varphi = 0$, $\varphi = 1$, $\varphi = 3$. Derive an expression for the velocity V at any point in the flow field and calculate the vorticity. (10 marks)
- b. Calculate the specific weight, specific mass, specific volume and specific gravity of a liquid having a volume of 6m³ and weight of 44kN. (10 marks)
- 4.
- a. A perfect gas is expanded from 5 to 1 bar by the $lawpV^{1.2} = C$. The initial temperature is 200°C. Calculate the change in specific gravity. Take R = 287 J/kgK, $\gamma = 1.4$. (10 marks)
- b. Obtain an expression in non-dimensional form for the pressure gradient in a horizontal pipe of circular cross-section. Show how this relates to the familiar expression for frictional head loss. (10 marks)
- 5.
- a. State the Newton's Law of viscosity

(10 marks)

A plate of 0.05mm distant from a fixed plate moves at 1.2m/s and requires a force of 2.2N/m² to maintain the speed. Find the viscosity of the fluid between the plates. (10 marks)