

MATH 852: RIEMANNIAN GEOMETRY I

STREAM: Y1S1

TIME: 3 HOURS

DAY: THURSDAY, 2.00 PM - 5.00 PM

DATE: 04/08/2022

INSTRUCTIONS:

- 1. Do not write anything on this question paper.
- 2. Answer Question ONE (Compulsory) and Any Other THREE Questions.

QUESTION ONE compulsory (15MARKS)

a. Show that $A_{pq} - A_{qp} = \frac{\partial A_p}{\partial x^q} - \frac{\partial A_q}{\partial x^p}$	[4marks]
b. Determine the metric tensor in cylindrical coordinates	[3marks]
c. Calculate the intrinsic derivatives of	
i. An invariant ϕ	[2marks]
ii. A^{j}	[3marks]
iii. A_k^j	[3marks]
QUESTION TWO (15MARKS)	

- a. If A_r^{pq} and B_r^{pq} are tensors, prove that their sum and difference are also tensors [4marks]
- b. Let A_{rst}^{pq} be a tensor, set p = t and show that A_{rsp}^{pq} is also a tensor [3marks]
- c. Prove that the construction of the tensor A_q^{pq} is also a scalar or invariant [4marks]
- d. Show that the construction of the outer product of the tensors A^p and B_q is an invariant [4marks]

QUESTION THREE (15MARKS)

- a. Differentiate between the covariant and contravariant components of \vec{A} (2 marks)
- b. Write the law of transformation for the tensors A_{jk}^{i} and B_{ijk}^{mn} [4marks]
- c. Proof that the cylindrical coordinate system is orthogonal [5marks]
- d. Represent the vector $\vec{A} = z\hat{i} 2x\hat{j} + y\hat{k}$ in cylindrical coordinate and thus determine its components [4marks]

QUESTION FOUR (15MARKS)

a. Let \vec{A} be a vector defined with respect to two general curvilinear coordinate system $(u_1u_2u_3)(\overline{u_1u_2u_3})$, establish a relation between the contravariant components in the first and second system

[7marks]

- b. Given $\overline{r} = x\hat{i} + y\hat{j} + z\hat{k}$, express the velocity \overline{v} and acceleration \overline{a} of a particle in cylindrical coordinate system [4marks]
- c. Prove that $\frac{d}{dt}(e_{\rho}) = +\dot{\phi}e_{\phi}$ and $\frac{d}{dt}(e_{\phi}) = -\dot{\phi}e_{\rho}$ [4marks]

QUESTION FIVE (15MARKS)

a. A contravariant vector has components a,b,c in rectangular coordinate system. Find the contravariant components in spherical coordinates

[7 marks]

b. Show that $\frac{\partial A_p}{\partial x^q}$ is not a tensor even though A_p is a covariant tensor of rank one. [4marks]

c. If $\phi = a_{jk}A^jA^k$, show that we can write $\phi = b_{jk}A^jA^k$ where b_{jk} is symmetric. [4marks]

QUESTION SIX (15MARKS)

- a. Show that the square of the elements of arc length in general curvilinear system can be expressed as $ds^2 = \sum_{p=1}^{3} \sum_{q=1}^{3} g_{pq} du_p du_q$ [5marks]
- b. A covariant tensor has components $(xy, 2y z^2, xz)$ in rectangular coordinates. Find its contravariant components in spherical coordinates [10marks]