

FIRST YEAR EXAMINATION FOR THE AWARD OF THE DEGREE OF MASTERS IN PURE MATHEMATICS SECOND SEMESTER 2021/2022 (FEBRUARY-MARCH, 2022)

MATH 812: COMPLEX ANALYSIS II

STREAM: : Y1S2

TIME: 3 HOURS

DATE: 26/02/2022

DAY: MONDAY, 8.00 AM - 11.00 AM

INSTRUCTIONS:

- 1. Do not write anything on this question paper.
- 2. Answer Question One (Compulsory) and Any Other Two Questions.

QUESTION ONE

SECTION A [30 MARKS]

1.

- a. Show that $P.V \int_{-\infty}^{\infty} x dx = \lim_{R \to \infty} 0 = 0$ (5 marks)
- b. Use the function $f(z) = \frac{z^2}{z^6+1}$ to evaluate the integral $\int_0^\infty \frac{z^2}{z^6+1} dx$ (5marks)
- c. Show that $\int_{-\infty}^{\infty} \frac{\cos 3x}{(x^2+1)^2} dx = \frac{2\pi}{e^3}$ (5 marks)
- d. State Jordan's Lemma (5 marks)
- e. Find the Cauchy principal value of $\int_{-\infty}^{\infty} \frac{x \sin x dx}{x^2 + 2x + 2}$ (5 marks)
- f. Show that $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$ (5 marks)

SECTION B (20 MARKS)

- i. Suppose the points z₁ = 1, z₂ = 0, z₃ = −1 are mapped onto w₁ = i, w₂ = ∞, w₃ = 1, show the type of transformation used(5 marks)
 ii. Show that y = c₂ is mapped by w = ¹/_z onto a circle (5 marks)
- iii. Find the Laurent series for $f(z) = \frac{1}{(z-i)^2}$ at z = i (5 marks)
- iv. Compute $\int_{0}^{1+i} z^2 dz$ (5 marks)

QUESTION TWO

- State and proof Scharz-Christoffel theorem of transformation (10marks)
- i. Locate the vertices of a rectangle a > 1 where $x_1 = -a$, $x_2 = -1$, $x_3 = 1$ and $x_4 = a$ (10 marks)

QUESTION THREE

i. Find the function f(t) that corresponds to $F(s) = \frac{s}{(s^2+a^2)^2}$ (a > 0) (10 marks)

ii. Show that mapping w = (1 + i)z + 2 transforms the rectangular region in the z = (x, y) into a rectangular region w = (u, v) with inclination $angle\frac{\pi}{4}$ (5 marks)

iii. Find the special case of transformation $z_1 = -1, z_2 = 0, z_3 = 1$ onto points $w_1 = -i, w_2 = 1, w_3 = 1$ (5 marks)

QUESTION FOUR

a. Determine the number of roots of $z^7 - 4z^3 + z - 1$ inside

a circle
$$|z| = 1$$
 (5 marks)

- b. Show that $\int_0^{2\pi} \frac{d\theta}{1+a\sin\theta} dx = \frac{2\pi}{\sqrt{1-a^2}}$ (5 marks)
- c. State and proof Rouche's Theorem (10 marks)