KISII UNIVERSITY

EXAMINATION FOR THE DEGREE OF MASTER OF SCI-ENCE IN PURE MATHEMATICS

MATH 821- OPERATOR THEORY I

STREAM- MSC Y2SI

TIME: 3 HOURS

INSTRUCTIONS: ANSWER QUESTION ONE COMPULSORY AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a) i) Let
$$A = \begin{pmatrix} 1 & 3 \\ -5 & 9 \end{pmatrix}$$
. Determine $\delta(A)$, eigen space of A and $\rho(A)$ (9mks)

ii) What is a regular value of an operator T? (1 mk)

b) Suppose $T \in B(X)$ where $X \neq \{\theta\}$ is a Hilbert space. Prove that

i) Ker T=
$$(ImT^*)^{\perp}$$
 (4mks)

ii) T is invertible iff T*is invertible (4mks)

c) Prove that the spectral radius and the norm of a self adjoint operator

T on X coincide (6mks)

- d) i) What is a linear projection operator? (1mk)
 - ii) Prove that for any projection P on a Hilbert space H, $\|p\| \leq 1,$

$$||p|| = 1 \text{ if } P(H) \neq \{0\}$$
 (5mks)

QUESTION TWO (20 MARKS)

a) i) If S is a bounded linear operator on a Banach space X and $||S|| < |\lambda|$, $S_{\lambda} = (\lambda I - S)^{-1}$ is a bounded operator. Prove that $S_{\lambda} = \sum_{n=0}^{\infty} \frac{S^n}{\lambda^{n+1}} (10 \text{ mks})$ ii) State the Lax-Milgram lemma (2mks)

b) Define the spectrum of an operator T hence find the spectrum of the matrix

$$\mathbf{M} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \text{ for } b \neq 0 \tag{6mks}$$

QUESTION THREE (20 MARKS)

a) Let $T \in B(X, X)$ where X is a Banach space. Prove that if ||T|| < 1

then $(I - T)^{-1}$ exists as a bounded linear operator on X and

$$(I - T)^{-1} = \sum_{j=0}^{\infty} T^j = I + T + T^2 + \dots$$
 (10mks)

b) Let T be a normal operator, prove that $T_x = \lambda_x$ iff $T^*x = \overline{\lambda}x$ (10mks)

QUESTION FOUR (20 MARKS)

a) Prove that the spectrum of a bounded self adjoint linear operator	
T:H \rightarrow H on a complex hilbert space H is real	(5mks)
b) Let H be a Hilbert space, prove that $p = p_1 p_2$ is a projection on H	
iff the $p_1 p_2 = p_2 p_1$	$(5 \mathrm{mks})$
b) Find a linear operator $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ which is indempotent but not	
self adjoint	(3mks)
c) State and proof the Hellinger-Toeplitz theorem	$(7 \mathrm{mks})$