KISII UNIVERSITY

EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN PURE MATH-EMATICS

MATH 822- OPERATOR THEORY II

STREAM- MSC Y2S2

TIME: 3 HOURS

INSTRUCTIONS: ANSWER QUESTION ONE COMPULSORY AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a) i) Define a Banach algebra

- (1mk)
- ii) Let A be a unital Banach algebra and $\lambda \in A$ such that $\|\lambda\| < 1$.

Prove that $1 - \lambda$ is invertible and $\|(1 - \lambda)^{-1}\| \le \frac{1}{1 - \|\lambda\|}$ (10mks)

b) Let X be an element of a Banach algebra A and $|\lambda| > ||x||$, prove

that
$$(\lambda I - x)^{-1} = \sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}}$$
 (10mks)

c) i) What is a homomorphism? (1mk)

ii) Let X be a Banach algebra and $f: X \longrightarrow \mathbb{C}$ be a homomorphism.

Prove that $|f(x)| \le ||x|| \forall x \in X$ (7mks)

iii) State without proof the Gelfand- Mazur theorem (2mks)

QUESTION TWO (20 MARKS)

- a) i) Distinguish between an involution and a C * -algebra (4mks)
 - ii) If a is a self adjoint element of a C * -algebra A, prove that
 - $r\left(a\right) = \|a\| \tag{4mks}$
- b) i) Define a symmetric linear operator (1mk)

ii)Prove that a densely defined linear operator T in a complex Hilbert

- space H is symmetric iff $T \subset T^*$ (8mks)
- c) Prove that a self-adjoint linear operator T is maximally symmetric (3mks)

QUESTION THREE (20 MARKS)

(9mks)

(1mk)

(9 mks)

a) i)Define a closed linear operator	(2mks)
ii) Prove that the Hilbert adjoint operator T^* defined by $T^*y = y^*$	
is closed	(8mks)
b) Prove that every non-expansive mapping is pseudo-contractive (10mk	s)
QUESTION FOUR (20 MARKS)	
a) i) Define a partial isometry	(1mk)
ii) Let U be a partial isometry in H, prove that $U * U$ is an	

ii) Prove that if the cayley transform of a symmetric operator is

unitary, then the operator is self adjoint

orthogonal projection

b) i) Define the cayley transform