

MATH 873: MULTIVARIATE ANALYISI

STREAM: Y1S1

TIME: 3 HOURS

DATE: 23/09/2022

DAY: FRIDAY, 8.00 AM - 11.00 AM

INSTRUCTIONS:

1. Do not write anything on this question paper.

2. Answer Question ONE (Compulsory) and Any Other TWO Questions

QUESTION ONE (30 MARKS)

1 a) State three objectives of Multivariate data analysis (3marks) b) Explain the meaning of correlation coefficient in multivariate analysis (2marks) c) Show that Var(X) can be written as $\sum E[XX^T] - \mu\mu^T$ (4marks) d) Given that $\Sigma = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 9 & -3 \\ 2 & -3 & 25 \end{bmatrix}$ i) Obtain $V^{\frac{1}{2}}$ (2marks) ii) ρ (2marks) e) Given that $X \sim N_3(\mu, \varepsilon)$ where $\sum = \begin{bmatrix} 4 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, determine whether i) X_1 and X_2 are independent (1mark) ii) (X_1X_2) and X_3 are independent (3marks) Page 1 of 3

f) Let $a \neq 0$ where \underline{a} is a $p \times 1$ vector of constant. Show that $Var(a^T X) = a^T \sum a$ (5marks)

g) Consider a p-variate normal distribution $f(x) = \left(\frac{1}{2\pi}\right)^{\frac{p}{2}} \frac{1}{|\Sigma|^{\frac{1}{2}}} exp^{-\frac{1}{2}Q}$

where
$$Q = (X - \mu)^{1} \Sigma^{-1} (X - \mu)$$
. Show that
i) $X = \mu$ (5marks)

ii)
$$Q = \underline{X}^{1} \Sigma^{-1} \underline{X} - \underline{X}^{1} \Sigma^{-1} \underline{\mu} - \underline{\mu}^{1} \Sigma^{-1} \underline{X} + \underline{\mu}^{1} \Sigma^{-1} \underline{\mu}$$
(3marks)

QUESTION TWO (15 MARKS)

a) Explain Hotellings T^2 statistics (1mark) b) Outline the procedure of testing hypothesis using Hotellings T^2 statistics (4marks) c) let a matrix for a random sample of size n = 7 from a bivariate normal population be $X = \begin{cases} 15 & 13 & 12 & 15 & 17 & 10 & 16 \\ 19 & 15 & 17 & 21 & 24 & 20 & 17 \end{cases}$. Test the hypothesis that; $H_0: \mu = [17 \ 15]^1$ vs $H_1: \mu \neq [17 \ 15]^1$ at $\alpha = 0.05$ (10marks)

QUESTION THREE (15 MARKS)

2 a) Write down the bivariate normal distribution (3marks) b) Given that $X \sim N_3(\mu, \varepsilon)$ find the distribution of $Y = \begin{bmatrix} X_1 - X_2 \\ X_2 - X_3 \end{bmatrix}$ (6marks) c) Suppose $X \sim N_5(\mu, \varepsilon)$ find the distribution of $\begin{bmatrix} X_2 \\ X_4 \end{bmatrix}$ (6marks)

QUESTION FOUR (15 MARKS)

a) Given a bivariate random vector $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, explain conditional distribution

b) of x_2 given x_1 (2marks) c) Given $\underbrace{X}_{2} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$, $\underbrace{\mu}_{2} = \begin{pmatrix} 2 \\ 5 \\ -2 \\ 1 \end{pmatrix}$, $\sum_{1} = \begin{bmatrix} 9 & 0 & 3 & 3 \\ 0 & 1 & -1 & 2 \\ 3 & -1 & 6 & -3 \\ 3 & 2 & -3 & 7 \end{bmatrix}$ and that $\underbrace{Y}_{2} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, $\underbrace{Y}_{2} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ Obtain

i)
$$E\left(\underline{Y} \mid \underline{V}\right)$$
 (4marks)
ii) $Var\left(\underline{Y} \mid \underline{V}\right)$ (4marks)

d) Suppose U = a'X and V = b'X, show that $COV(U, V) = a' \sum b$ (5marks)

QUESTION FIVE (15 MARKS)

- (4marks)
- a) Suppose X is a random vector, show that $var(X) = E[XX^T] \mu\mu^T$ b) Given that $U = a^T X$ and $V = b^T X$ where X is a random vector and *b* and *a* are some vectors of constants. Determine Cov(U, V)(5marks)
- c) Given that a p-variate normal distribution i.e $X \sim N_p(\mu, \Sigma)$.
- d) Define $Y = \Sigma^{-\frac{1}{2}} (X \mu)$ find the density function of *Y i.e* f(y)(6marks)