MATH 882

MATH 882: MEASURE THEORY AND PROBABILITY

STREAM: Y1S1

TIME: 3 HOURS

DAY: THURSDAY, 2.00 PM - 5.00 PM

DATE: 22/09/2022

INSTRUCTIONS:

1. Do not write anything on this question paper.

2. Answer Question ONE (Compulsory) and Any Other THREE Questions

QUESTION ONE-25 MARKS

a)	Define	
----	--------	--

i)	Lebesgue-Stieltjes Measure on <i>R</i> .	[5 Marks]
ii)	Distribution Function	[5 Marks]
iii)	Measurable Space	[5 Marks]

b) Let v be a measurable function on a measure space (X, A). Define the terms below;

i)	Positive set with respect to v.	[5 Marks]
ii)	Negative set with respect to v .	[5 Marks]

QUESTION TWO-15 MARKS

Let (X, A, μ) be a measure space and let *s* be a non negative measurable simple function on *X*. Define φ and A by;

$$\varphi(E) = \int_E sd\mu \quad (E\epsilon A)$$

Then φ is a measure on (X,A). Proof.

QUESTION THREE-15 MARKS

Let f be a measurable function on a measure space (X, A, μ) . Then f is integrable iff |f| is integrable. Proof

QUESTION FOUR-15 MARKS

Let f be a measurable function on a measure space (X, A, μ) such that $\int_X f d\mu$ exists. Then $\left|\int_X f d\mu\right| \le \left|\int_X f d\mu\right|$. Proof.

QUESTION FIVE-15 MARKS

State and proof Monotonicity of a Measure.