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Abstract

Orthogonality of operators in Hilbert spaces is a notion that has been

studied for a duration of some time by many mathematicians such as

Oleche, Okelo, Agure and many others. Many researchers have obtained

great results concerning orthogonality of operators in normed spaces es-

pecially of elementary operators but this has not been fully investigated

particulary orthogonality of finite operators in normed spaces. In this

study, we considered finite operators and characterized their orthogonal-

ity. The objectives of this study are to: Characterize finiteness of elemen-

tary operators, establish orthogonality conditions for finite elementary

operators and determine Birkhoff-James orthogonality for finite elemen-

tary operators. The methodology involved the use of Gram Schmidt pro-

cedure, Berberian Technique, Putnam Fuglede property, use of known

inequalities such as Triangle inequality, Minkowski’s inequality, Hölder’s

inequality, Cauchy Schwarz inequality and Bessel’s inequality. We also

used technical approaches such as Tensor product and Direct sum de-

composition. Concerning finite elementary operators we showed that the

elementary operators(Jordan elementary operator, generalized derivation,

inner derivation, basic elementary operator) are finite. Then, regarding

orthogonality conditions for finite elementary operators we proved that

the range of finite elementary operators is orthogonal to its null space if

the operators are contractive and finally on Birkhoff-James orthogonality

for finite elementary operators we showed that the the range of finite ele-

mentary operators is orthogonal to its kernel in terms of Birkhoff-James.

The results obtained are applicable in quantum theory in estimation of

the distance between the identity operator and the commutators.
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Chapter 1

INTRODUCTION

1.1 Mathematical background

The usual definition of orthogonality of vectors of a metric space is that

q⊥h if and only if the inner product ⟨q, h⟩ = 0. Orthogonality in any

space that is normed can not be defined in the same way of the space

endowed with an inner product because a normed space is not always an

inner product space. Hence, since 1934 various concepts of orthogonality

in Hilbert spaces have been studied and introduced by Birkhoff, James,

Robert[3] [2] [1] [14] among others. These studies lead to several versions

of orthogonality such as:

(i). Rorberts orthogonality(1934): ∥j − γk∥ = ∥j + γk∥, for all γ ∈ R.

(ii). Birkhoff orthogonality(1935): ∥j∥ ≤ ∥j + γk∥, for all γ ∈ R.

(iii). Isosceles orthogonality(1945): ∥j − k∥ = ∥j + k∥.

(iv). Pythagorean orthogonality(1945): ∥j − k∥2 = ∥j∥2 + ∥k∥2.

1



(v). Singer orthogonality(1957): j = 0 or k = 0 or ∥ j
∥j∥ + k

∥k∥∥ =

∥ j
∥j∥ −

k
∥k∥∥.

(vi). a-isosceles orthogonality(1988): ∥j − ak∥ = ∥j + ak∥.

(vii). a-pythagorean orthogonality(1988): ∥j − ak∥2 = ∥j∥2 + a2∥k∥2.

(viii). Carlsson(1961):
∑m

k=1 ak∥bkx+cky∥2 = 0 where m ≥ 2 and ak, bk, ck ∈

R,
∑m

k=1 akbkck ̸= 0,
∑m

k=1 akb
2
k =

∑m
k=1 akc

2
k = 0.

(ix). ab(1978): ∥ap+ bq∥2 + ∥p+ q∥2 = ∥ap+ q∥2 + ∥p+ bq∥2.

(x). a(1983): (1 + a2)∥q + r∥2 = ∥aq + r∥2 + ∥q + ar∥2.

(xi). U-isosceles(1957): either ∥q∥∥r∥ = 0, or ∥q∥−1q is isosceles-

orthogonal to ∥r∥−1r.

(xii). U-pythagorean(1986): either ∥q∥∥r∥ = 0, or ∥q∥−1q is pythagorean-

orthogonal to ∥r∥−1r.

(xiii). Area(1986): either ∥q∥∥r∥ = 0 , or they are linearly independent

and that q, r,−q,−r cut the unit ball of their plane independently

in four equivalent parts.

(xiv). Diminnie(1983): sup{q(e)s(j) − q(j)s(e) : q, s ∈ S ′}=∥e∥∥j∥, S ′

representing the unit sphere of the space of functionals of E.

A linear operator Q on a Hilbert space H is finite if ∥QX −XQ− I∥ ≥

1 for each X ∈ L(H). William [92] showed that the algebra of finite

operators involves normal operators, operators that are closed, opera-

tors with a uniformly continuous summand, and the Banach algebra with

an involution satisfying the properties of adjoint originating from each

2



and every member. The results implied the group of self-commutators

is uniformly closed and that the class of operators that have a reducing

subspace of finite dimension is non-uniformly dense. Elalami [39] gave a

new class of finite operators using the knowledge of the reducing approx-

imate spectrum of an operator. In this case the concept of completely

finite operators was introduced. Those are operators A such that AE is

finite for any orthogonal reducing subspace E of A. For those operators

Elalami [39] gave characterizations and proved that dominant operators

are completely finite.

Duggal [36] improved the inequality of Du Hong-Ke to ∥QZQ−Z+J∥ ≥

∥Z∥ for all operators Z. Indeed, Duggal [36] proved that the inequality

of Du Hong-Ke is valid for unitary invariant norms and it was shown that

the Du Hong-Ke inequality is equivalent to the Anderson inequality. In

[86] Takayuki, Masatoshi and Takeaki introduced another group ”class A”

provided by operator inequalities that involves the group of paranormal

operators and the group of log-hyponormal operators. It turned out that

their results contained another proof of Ando’s results in which every log-

hyponormal operator is paranormal. New groups of operators similar to

class A operators and paranormal operators were also introduced.

Salah [79] gave a group of finite operators of the form S + G whereby

S ∈ L(Z) and G is compact. Salah [79] proved that wo(δS,P ) = coδ(δS,P ),

where wo(δS,P ), coδ(δS,P ) denote respectively the numerical range of δS,P

and the convex hull of δ(δS,P ) (the spectrum of δS,P ) for certain operators

S, P ∈ L(Z), δS,P is the ant operator on L(Z) defined by δS,P = SZ−ZP

Z ∈ L(Z). In [81] Salah characterized the operators T ∈ L(H) and

proved the range-kernel orthogonality results for the operators Q,R ∈
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L(H) that are non-normal in terms of Birkoff-James. Salah [81] intro-

duced another notion to characterize Anderson’s theorem that is inde-

pendent of normality through the Putnam-Fuglede property.

Bachir [15] gave results on orthogonality of dominant operators and log-

hyponormal or p-hyponormal operators. Bachir [15] studied orthogonality

of certain operators. The main goal was to dertermine the range-kernel

orthogonality results of δS,R for some operators. Bachir [15] proved that

the range of δS,R is orthogonal to the nullspace of δS,R when R∗ and S is

dominant is log-hyponormal or p-hyponormal. In [80] Salah proved that

paranormal operators are finite and presented some examples of operators

that are finite. Further study of the inequality ∥I−AX−XA∥ ≥ 1 was

also given. Bouzenda [83] proved that a spectraloid operator is finite and

that the operator given by A+K is also finite where A is convexoid and

K is compact. Bouzenda [83] studied orthogonality of some operators,

a new class of finite operators was given and some generalized operators

were presented.

Hadia [48] presented some properties of finite operators and gave some

groups of operators which are in the group of finite operators and found

for which condition A+W is a finite operator in L(H ⊕H). Salah [78]

presented another set of operators that are finite which involves the set

of paranormal operators and proved that the range and null space of δY,Z

are orthogonal for a group of operators involving the group of operators

that are normal. Salah and Smail [84] proved that a paranormal operator

is finite and presented properties of finite operators.

Kapoor and Jagadish Prasad [59] characterized inner product spaces and
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provided simple results of characterizations same as the existing ones.

Also, in [59] it was shown that, Isosceles orthogonality is distinctive pro-

vided the space is convex and that Pythagorean orthogonality is unique

in spaces with norm structure. Bhatia and Semrl [19] showed that if Q

and F are matrices such that ∥Q+ zF∥ ≥ ∥Q∥ for all complex numbers

z, then in this case Q is orthogonal to F . Bhatia and Semrl [19] found im-

portant properties for this orthogonality to hold. Some characterizations

and generalizations were also obtained.

In normed spaces, Diminnie, Raymond and Edward [26] defined both

pythagorean and Isosceles orthogonality and it was found that the homo-

geneity property holds for the orthogonalities in an inner product space.

Koldobsky [56] showed that a bounded linear operator G : Y → Y is or-

thogonal provided that there is a product G and a positive constant.

Alonso and Maria [4] studied geometric properties defined in Banach

spaces of an orthogonality relation and based on the property of right

angles.

Jacek [53] defined an approximate Birkhofff orthogonality relation in

normed spaces. Jacek [53] compared it with that introduced by Dragomir

and established few characteristics of approximate Birkhofff orthogonal-

ity. In this case, it was shown that approximate Birkhofff orthogonality

in smooth space and from the semi-inner product is equivalent to approx-

imate orthogonality. In [28] Dragoljub introduced ψ-Gateaux derivative

for operators to be orthogonal to the operator in both spaces C1 and C∞

(nuclear and compact operators on a Hilbert spaces). Further, Dragoljub

[28] applied these results to prove that there exists a normal derivation

δA such that ranδA ⊕ kerδA ̸= C1 and a related result concerning C∞.
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Fathi [40] adopted the notion of orthogonality and established a char-

acterization for orthogonality in the spaces Lps(C), 1 ≤ P < ∞. Fathi

[40] denoted L(Q,Z) as the group of operators from the normed space Q

to the Banach space Z. For the Hilbert spaces Q and Z it was shown

that the group of completely continuous operators in L(Q,Z) is the clo-

sure L(Q,Z) of the algebra of operators with finite rank. That gave a

more efficient description of completely continuous operators. Fathi [40]

showed that this property holds whereby Q is any space that is normed

and Z is a Banach space in which an orthonormal countable basis holds.

Orthogonality was defined in relation to coefficient functionals. The ob-

jective was to describe a new and understandable type of orthogonality

that explains in detail the structure that can be used to study different

groups of functional spaces and operators.

Fathi [40] introduced another definition that includes characteristics among

other things. It was shown that given (xn) is orthonormal then (xn) is

semi orthonormal. Fathi [40] established new geometric properties for

the different types. Various examples were obtained to show there is a

possibility for (xn) to be orthonormal. Fathi [40] finished by obtaining

another example whereit was shown that xi is orthogonal to xj for all

i ̸= j while xn is not orthonormal. Finally, generalizations in the Banach

spaces of the usual characterization of orthogonality L2
s(C), through inner

products were obtained.

Debmalya, Kallol and Jha [34] proved that the normed space X is strictly

convex such that given the elements q, r of the unit sphere SX , q ⊥ r

means that ∥q + λr∥ > 1 for every λ ̸= 0. Debmalya, Kallol and Jha

[34] applied this result through Birkhoff-James orthogonality to find the
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properties for strong orthonormality of a countable basis in a strictly con-

vex space Z of finite dimension. Using this result Debmalya, Kallol and

Jha [34] gave an estimation for lower limits of sj+(1− s)k, s ∈ [0, 1] and

∥k+λs∥,for complex λ, for every j, k ∈ Sj with j ⊥B k. Debmalya, Kallol

and Jha [34] found a condition for the existence of conjugate diameters

through the points e1, e2 ∈ Sj in a real 2-dimensional strict convex space.

For a real strictly convex smooth space of finite dimension the concept of

generalized conjugate diameters was introduced.

Hendra and Mashadi [49] discussed some concepts of orthogonalities in

2-normed spaces and their drawbacks. New definitions of orthogonal-

ity were formulated which improved the existing ones. In the standard

2-normed spaces the usual orthogonality coincide with their notions of

orthogonality. Turnsek [90] characterized isometries and co-isometries in

L(Z) in the sense of James’ orthogonality. As a result [90] Turnsek ob-

tained a characterization of conjugate linear or surjective linear mappings

ϕ : L(Z) → L(Z) preserving James’ orthogonality in all directions.

Madjid and Mohammad [69] introduced the notion of orthogonality con-

stant mappings in isosceles orthogonal spaces and established stability of

orthogonal constant mappings and the stability of periderized quadratic

equation q(r + s) + h(r + s) = g(r) + g(s) was studied. Madjid and Mo-

hammad [69] dealt with isosceles orthogonality and in their case a normed

linear space Z given that the isosceles orthogonality was referred as an

isosceles orthogonal space. Shoja and Mazaheri [85] investigated some

properties of the General orthogonality in Banach spaces, and obtained

some results of general orthogonality in Banach spaces similar to orthog-

onality of Hilbert spaces. The relation between this concept in smooth
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spaces and sense of Birkhoff-James was also considered.

In normed spaces, Jacek [52] considered a class of linear mappings pre-

serving this relation through Birkhoff-James orthogonality. Some related

stability problems were stated. Horst [46] showed that the linear map-

ping from a normed space Q to a normed space R is isosceles orthogonal

given that it is an isometric scalar multiple. In normed spaces, it was

shown that the concept of distance that preserve maps originated from

the Mazur-Uham theorem. Since Birkhoff-Orthogonality is homogenous

and not symmetric whereby Isosceles orthogonality is symmetric and not

homogenous, that showed that the two types of orthogonality have differ-

ent properties in linear normed spaces. In inner product spaces, one could

easily yield the concepts of orthogonality that yield the usual orthogonal-

ity. Precisely, the orthogonalities mean the same given an inner product

space. Therefore they might have been referred as natural extention of

orthogonality to normed spaces.

Horst [46] investigated that an orthogonal linear map in an inner product

space is necessary an isometric scalar multiple, whereby a mapping Q

preserves orthogonality provided that p is orthogonal to smeans thatQp is

orthogonal to Qs. Kallol and Hossein [61] obtained the required condition

for completely continous linear operator T to be orthogonal to another

completely continous linear operator A in the sense of James. Also it was

shown that if T is orthogonal to A and 0 ̸∈ σap(A) then sup{|(Tu, v)| =

∥u∥ = 1 and (Au, v) = 0}. It was proved that the complex scalar λ0

is characterized by the fact that there exist {xn}, ∥xn∥ = 1 such that

((T − λoA)xn , Axn) → 0 and ∥(T − λ0A)xn∥ → ∥T − λ0A∥.
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Dragomir and Kikianty [29] introduced types of orthogonality of 2-HH

norms and the characteristics for those orthogonalities were determined.

Inner product spaces and strictly convex spaces were also characterized.

Khalil and Alkhawaida [64] presented two new definition of orthogonality

types. One was related to proximity in Banach spaces and other re-

lated to contractive projections. The relation between the two types was

studied and basic properties of each type were presented. The reflection

of such orthogonalities to compact operators was discussed. Khalil and

Alkhawaida [64] introduced new definitions of orthogonality using theory

of best approximation in Banach spaces and projections on subspaces in

Banach spaces. Main properties and consequences of these definitions

were studied. The relations to compact operators was also studied.

Hossein [47] extended the concept of orthogonality to Banach spaces.

Completely continuous operators on Banach spaces that has orthonormal

countable basis were also characterized. Cuixia and Senlin [24] studied ho-

mogeneity in normed linear spaces of isosceles orthogonality and that was

an important notion of orthogonality from the two view point. Cuixia and

Senlin [24] related homogeneous isosceles orthogonality to other types of

orthogonality which include vectors with isometric reflection and vectors

with l2-summand and it was shown that a Banach space Z is a Hilbert

space provided that the interior of the group of isosceles orthogonality

with homogeneity property in the unit sphere of Z is nonempty. More-

over, a constant NHZ that is geometric to determine isosceles orthogonal-

ity is non homogeinous was introduced. It was shown that 0 ≤ NH ≤ 2

NHZ = 0 provided Z is a Hilbert space and NHZ = 2 given that Z is

not a square uniformly.
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Salah and Hacene minimized the C∞-norm from L(H) to C∞ of suitable

affine mappings through convex and differentiable analysis as studied in

operator theory. The mappings considered generally elementary operator

especially the generalized derivations that were the most important. As a

consequence, global minima in terms of orthogonality was characterized

in Banach spaces. Later Ionica [50] related Birkhoff orthogonality to

notions in convex analysis. Hence, Ionica [50] obtained the Blanco and

Turnsek results regarding the linear transformations in terms of Birkhoff

orthogonality.

Ali Zamani and Mohammad [9] gave results on approximate Roberts or-

thogonality and approximate Birkhoff orthogonality and the properties

of approximate Roberts orthogonality were also studied. Moreover, the

set of mappings that preserve approximate Roberts orthogonality of type

ε ⊥ R. It was shown that an ε-isometric scalar multiple is a mapping

that preserves approximate Roberts orthogonality. Justyna [54] showed

how different types of orthogonality have been described in functional

equations. Justyna [54] introduced aspects of orthogonality, functional

equations examples were given for vectors that are orthogonal. Some of

their results and some applications were shown. Then, the factors affect-

ing stability of some of functional equations were discussed considering

different notions. Also, Justyna [54] mentioned the orthogonality equa-

tion and the challenge that preserve orthogonality. Finally, some open

problems regarding those topics were stated.

Pawel [74] introduced an approximate and exact orthogonality relation

and considered algebra of linear mappings that preserve approximate or-

thogonality. Pawel [74] studied the property of a linear mapping reserv-
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ing the B-orthogonality and it was proved to be equivalent to the p, p+-

orthogonality (although these orthogonalities need not be equivalent).

However, it was shown that every map that is linear with approximate

orthogonality is a isometric scalar multiple. It was shown that a linear

map which preserve Birkhoff-James orthogonality is a isometric scalar

multiple. Pawel [74] gave some characterizations of linear mappings with

approximate orthogonality in real normed spaces.

Later in [75] Pawel extended this study and showed that semi-orthogonality

and p+-orthogonality are not comparable unless it is for a smooth normed

space. Consequently smooth spaces were characterized in terms of ap-

proximate orthogonality. In [10] Ali Zamani and Mohammad introduced

the notion of approximate Roberts orthogonality set and investigated the

properties of the given sets. To add, Ali Zamani and Mohammad [10]

introduced the concept of approximate a-isosceles orthogonality and con-

sidered a group of transformations with approximate a-isosceles orthogo-

nality.

Chaoqun and Fangyan [25] investigated maps between normed spaces

with the orthogonality given by the norm derivative. Those maps were

proved to be an isometric scalar multiple. Bhuwan [20] studied two new

types of orthogonality from generalized carlsson orthogonality and some

properties of orthogonality in Banach spaces were verified as Best implied

Birkhoff orthogonality and Birkhoff orthogonality implied Best approxi-

mation. It was also shown that Pythagorean orthogonality implies Best

approximation.

In [18] Balestro, Horst and Teixera introduced new geometric constants
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that differentiates Roberts orthogonality and Birkhoff orthogonality in

spaces that are normed by characterizing Roberts orthogonality in two

different ways through bisectors and using certain linear transformations.

The main objective was to introduce new characterizations of Rorbert

orthogonality. One of them was related to segments whose bisectors con-

tain lines, and the other one associated this type of orthogonality to cer-

tain symmetries of the unit circle. Balestro studied geometrical structure

of bisectors in normal planes and defined constant Cs, which quantifies

the maximum symmetry of the unit circle regarding directions which are

Birkhoff orthogonal.

From a geometric point of view [33] Debmalya, Kallol and Arpita stud-

ied two types of approximate Birkhoff-James othogonality in a space

that is normed, and characterized them in the sense of normal cones.

The concept of normal cones was characterized and related to approxi-

mate Birkhoff-James orthogonality in a Banach space of dimension 2 was

explored. Uniqueness theorem was obtained for approximate Birkhoff-

James orthogonality in a normed space. Their main aim was to study

two different approximation of Birkhoff-James orthogonality, to have a

good understanding of the properties of normed spaces. Among other

things Debmalya, Kallol and Arpita [33] exhibited that the two types of

approximate Birkhoff-James orthogonality have a close connection with

normal cones in a normed space. Thomas [91] combined functional ana-

lytic and geometric view points on approximate Birkhoff orthogonality in

generalized minkowskis spaces which are finite dimensional vector spaces

endowed with a gauge. That was the first approach in those spaces.

In a normed space X, Ghosh, Debmalya and Kallol [44] related strict
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convexity to orthogonality of operators in terms of Birkhoff-James in

K(X), for completely continuous operators on X. It was shown that a

Banach space that is reflexive Z is convex if given that Q,R ∈ K(Z),

Q ⊥B R ⇒ Q ⊥SB Q or Rz = 0 for some x ∈ Sz with ∥Qz∥ = ∥Q∥,

Q ∈ K(Z). It was shown that given Z is a Hilbert space of infinite

dimension then for every R ∈ L(Z) R ⊥B Q ⇒ Q ⊥B R if Q is the

zero operator. It was then proved that R ⊥B Q ⇒ Q ⊥B R for a real

Hilbert space Z, Q ⊥B R ⇒ R ⊥B Q for every R ∈ L(Z) if Q is the zero

operator.

Debmalya [30] studied Birkhoff-James orthogonality defined on a real Ba-

nach space of finite dimension for bounded linear operators. The main

reason for the study was in two ways, to determine Birkhoff-James or-

thogonality of transformations on a real Banach space whose dimension

is finite and to characterize the symmetric properties of Birkhoff-James

orthogonality of transformations defined on Z. Considering the obtained

results, Debmalya [30] studied the left symmetric properties of Birkhoff-

James orthogonality of mappings defined on L(l2p) (p ≥ 2. Letting F, ∥.∥

to be a Banach space whose dimension is finite and GF = f ∈ F : ∥f∥ ≤ 1

and GF = f ∈ F : ∥f∥ = 1 to be the unit ball and the unit sphere of the

Banach space defined by the usual operator norm respectively.

Debmalya [30] introduced a particular notion motivated by geometric

observations to determine Birkhoff-James orthogonality of vector space

homomorphism for j, k in a vector space Z of which a norm is defined on

a real Banach space of finite dimension, k ∈ Z+ if ∥j+λk∥ = ∥j∥ for every

λ ≥ 0, also k ∈ Z− if ∥j + λk∥ = ∥j∥ for every λ ≥ 0. The symmetric

property of Birkhoff-James orthogonality of linear transformations on a
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real complete vector space Z on which a norm of finite dimension is defined

was considered. So, Debmalya [30] considered this property in Banach

spaces and proved some results similar to the symmetric property of of

linear transformations on a real complete vector space Z on which a norm

of finite dimension is defined. It was shown that there is nonzero liner

operators Q ∈ L(Z) such that Q is left symmetric in L(Z). Lastly, using

some of the results obtained, Debmalya [30] proved that Q ∈ L2
r r ≥ 2,

r ̸= 0 is left symmetric given that Q is the zero operator. It was proved

that Q ∈ L(l2r) (r ≥ 2, r ̸= ∞) is left symmetric in relation to Birkhoff-

James orthogonality given that Q is the zero operator. Debmalya [30]

concluded that the result holds for a strictly convex of any finite dimension

and smooth real Banach spaces lnr (r > 2, r ̸= ∞).

Jacek [51] considered a linear operator Q : Z → Z on a normed space Z

reversing orthogonality. That is, satisfying the condition j ⊥ k → Qk ⊥

Qj for all j, k ∈ Z where ⊥ stands for Birkhoff orthogonality. Kallol and

Debmalya [60] studied Birkhoff James of two linear transformations Q, G

on (Rn, ∥.∥∞) . Kallol and Debmalya [60] found the required property for

Q to be orthogonal to G in terms of Birkhoff -James with some properties

on Q. In [60] a condition necessary for the existence of two operators Q,

G on (Rn, ∥.∥∞) with Q ⊥B G such that z ̸∈ Rn with ∥z∥∞ = 1, Qz ⊥B

Gz and ∥Qz∥∞ = ∥Q∥∞ was given. Kallol and Debmalya [60] found a

condition on Q so that if Qz ⊥B Gz then there is z ∈ Rn with ∥z∥∞ = 1

such that Qz ⊥B Gz and ∥Qz∥∞ = ∥Q∥∞. Then, orthogonality of vectors

in (Rn, ∥.∥∞) was related to orthogonality of operators on (Rn, ∥.∥∞) .

In [42] Ghosh, Kallol and Debmalya studied the orthogonality of bounded

linear transformations on (Rn, ∥.∥1) in the sense of Birkhoff-James. It had
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been shown that Q ⊥B G ⇒ G ⊥B Q for all operators G on (Rn, ∥.∥1)

given that Q obtains a norm at the extreme point, image that is left sym-

metric point of (Rn, ∥.∥1) and images of points that are extreme are zero.

It was also shown that G ⊥B Q ⇒ Q ⊥B G for all operators G provided

that Q obtains norm the extreme points given that the images of extreme

points are scalar multiples of extreme points. A necessary condition was

obtained for an operator Q to be left symmetric. It was proved that

Q = qij is right symmetric given that for every i ∈ {1, 2, ...} exactly one

term qi1, qi2...qin is non-zero and of the same magnitude proved that Q is

a left symmetric provided Q is the zero operator when the dimension is

more than two. It was then shown that if Q is a transformation (R2, ∥.∥1)

then Q is left symmetric given that Q attains norms at only one extreme

point say e,Qe is symmetric and the other extreme point is zero.

In [43] Ghosh, Debmalya and Kallol studied Birkhoff James orthogonality

of bounded linear transformations (Rn, ∥.∥∞) and characterized the right

and left symmetric operators on (Rn, ∥.∥∞). In [57] Kallol, Debmalya

and Arpita characterized the notion of approximate Birkhoff-James or-

thogonality for linear transformations on a normed space. Birkhoff James

orthogonality on Hilbert space of either finite or infinite dimension was

characterized in bounded linear transformations space and this improved

the recent result by Chiemlink in which Birkhoff-James orthogonality of

linear transformations on Hilbert space of finite dimension was character-

ized and also completely continuous operators on Hilbert space of finite

dimension and also operators that are compact on any Hilbert space.

Kallol, Debmalya and Arpita [57] characterized Birkhoff-James orthog-

onality Q ⊥ϵ
B G acting on either finite or infinite dimension, approxi-
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mate Birkhoff-James orthogonality Q ⊥ϵ
B G was determined in both cases

where Q,G denotes completely continuous operators on a Banach space

that is reflexive and the bounded linear operators Q,G on a vector space

where a norm is defined of either finite or infinite dimension was also pro-

vided. Interrelation between the space ground and the space of bounded

linear transformations was explored and Q ⊥ϵ
B G was characterized for

Q,G ∈ (XY ) in the sense of norm attainment set MQ where the space

X is a Banach space that is reflexive. Kallol, Debmalya and Arpita [57]

provided an alternative proof for the theorem which stated that in real

normed space of finite dimension Q ⊥ G provided there exist j, k ∈ MQ

such that Gj ∈ (Qk)
+ and Gk ∈ (Qk)

−.

In [31] Debmalya, Kallol and Arpita studied Birkoff-James orthogonality

of linear mappings that are bounded and characterized linear mappings on

a real space of infinite dimension that is normed through Birkhoff James.

While Birkhoff-James orthogonality was characterized for bounded lin-

ear operators defined on a Hilbert space or a finite dimensional Banach

space, the problem of of characterizing Birkhoff-James orthogonality on

normed linear spaces of infinite dimension for linear mappings that are

bounded remained unsolved. Motivated by the result on rotund bounded

linear mappings, Birkhoff-James orthogonality of rotund points in the

space of bounded linear operators was obtained. In order to obtain the

desired characterization for rotund points and for general bounded linear

operators.

Debmalya, Kallol and Arpita [31] introduced a new definition which was

essentially geometric in nature and hence in this manner a Birkhoff-James

orthogonality for linear operators that are bounded of general normed
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spaces was characterized. ϵ-orthogonality was decomposed to completely

characterize bounded linear mappings that are bounded through Birkhoff-

James. As a consequence, Birkhoff James orthogonality on a real normed

linear space for linear functionals that are bounded was characterized

provided the dual space is strictly convex. In [31] required conditions

for smoothness of linear that are bounded on a normed linear space of

infinite dimension was provided. In [58] Kallol, Arpita and Pawel studied

left symmetric mappings defined on a Banach space of infinite dimension

in the sense of Birkhoff-James.

In [62] Kallol, Debmalya, Arpita and Kalidas studied Birkhoff-James or-

thogonality of bounded linear mappings on complex complete vectors

spaces on which a norm is defined and obtained a complete character-

ization of the same. As a way of obtaining new definitions, it was illus-

trated that there is a possibility in spaces that are complex, to introduce

orthogonality of linear mappings similar to the real paces. It was shown

that, operator theoretic characterization of Birkhoff-James orthogonality

in the real case could be obtained in form of corollaries to their recent

study. In fact, Birkhoff-James orthogonality of completely continuous op-

erators was characterized in the complex form in order to differentiate the

complex form from the real one. The left symmetric linear operators on

complex two-dimensional lp space if and only if J is the zero operator was

also studied. In [77] Sanati and Kardel characterized the class of opera-

tors that preserve orthogonality on Hilbert space H of infinite dimension

as a scalar multiple of unitary operators of H and the subspaces of H

that are closed. For an orthogonal preserving operator, it was shown that

the spectrum is any circle that is centred at the origin.
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Debmalya, Kallol, and Arpita [32] studied Birkhoff-James orthogonality

for vector spaces in which a norm is defined for completely continuous

operators. Their main aim was to determine Birkhoff-James orthog-

onality of completely continuous operators defined on a normed linear

space. Through the concept of semi-inner-products and the similar ideas

in normed spaces, some of the recent results were generalized and im-

proved. In particular, Euclidean spaces was characterized and it was also

proved that there is a possibility of retrieving the norm of a completely

continuous operator in the terms of Birkhoff-James orthogonality. Cer-

tain results of approximation type were also presented in the space of

operators that are bounded.

Debmalya, Kallol, and Arpita [32] introduced the Bhatia-Semrl theorem

for operators that are compact on a Hilbert space on infinite dimension

and also characterized Euclidean spaces for all Banach spaces of finite

dimension. The concept of inner product spaces was correlated with the

types of r+ and r−. This enabled them to get the norm of a completely

continuous linear operators in relation to its interaction with Birkhoff-

James orthogonality. Finally, few approximation results were presented

in Hilbert spaces and Banach spaces

In [68] Kallol presented results on Birkhoff-James and smoothness of op-

erators in normed spaces. Kallol [68] explored the orthogonality relation

between elements in Banach spaces Z of operators L(Z) that are linear

and bounded. Smoothness of the space of operators that are linear and

bounded was also studied. In [21] Bhuwan and Prakash applied orthog-

onality in the best approximation in normed linear spaces . Hence, it

was shown that Birkhoff orthogonality means best approximation and
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best approximation means Birkhoff orthogonality. It was shown that

for ε-orthogonality, ε-best approximation means ε-orthogonality. In [21]

Bhuwan and Prakash showed how pythagorean orthogonality and best ap-

proximation, isosceles orthogonality and ε-best approximation are related

in normed spaces.

In [11] Ali Zamani generalized operators for a semi-inner product on a

Hilbert space in the sense of Birkhoff-James. Given that P and Q are lin-

ear transformations on a complex Hilbert space Z, the relation P ⊥K
J Q

was defined if P andQ are bounded with a semi-norm endowed with a pos-

itive operator J that satisfy ∥P +γQ∥J ≥ ∥P∥J for a complex γ. Zamani

[11] proved that P ⊥K
J Q given that there exist a sequence {zn} with a

norm of 1 in Z such that limn→∞ ∥Pzn∥J = ∥P∥J and lim⟨Pzn, Qzn⟩J = 0.

Some distance formulas in Semi-Hilbert spaces were also Provided.

In [12] Birkhoff-James orthogonality for linear transformations was char-

acterized and proved to be a vector space of operators on arbitrary Banach

spaces. Arbitrary Banach spaces were characterized and some conditions

were obtained. Arpita and Kallol [12] studied orthogonality in space of

operators L(Z) on arbitrary Hilbert space Z, both in relation to oper-

ator norm and numerical radius norm.Orthogonality of Birkhoff-James

orthogonality for operators in spaces that are completely normed was

also obtained. Their main goal was to determine Birkhoff-James orthog-

onality of the operator T ∈ L(Z,W ) to the subspace of L(Z,W ) in an

arbitrary Banach spaces Z and W set up.

Arpita and Kallol [12] first characterized Q ⊥ R where Q ∈ L(W,Z) and

R is a subspace of L(W,Z) of finite dimension andW is a reflexive Banach
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space given that Z is a Banach space of finite dimension. For arbitrary

Banach spaces W and Z of L(W,Z) and for an arbitrary subspace W ,

Q ⊥B R under suitable conditions. Arpita and Kallol [12] also character-

ized T ∈ L(W,Z) to a subspace of L(H) in the sense of Birkhoff-James

on a Hilbert space H of infinite dimension. Later, it was discovered that

in order to characterize orthogonality of operators, there was need for the

operators to attain norms. In [88] Bottazi, Conde and Debmalya deter-

mined the orthogonalities of Birkhoff-James and isosceles for operators

defined on Hilbert spaces and Banach spaces. There was no other univer-

sal concepts of orthogonality in a Banach space unlike in Hilbert spaces.

Then, it was found that there is a possibility of having several types of

orthogonality in such a space, in which each characterizes certain partic-

ular concept of orthogonality in Hilbert spaces. Since lack of a standard

orthogonality led to the differences of Hilbert spaces and Banach spaces,

Bottazi, Conde and Debmalya [88] explored linear operators in terms of

Birkhoff-James in a different aspect and discussed some applications to

this regard. A study on Isosceles orthogonality of mappings that are lin-

ear and bounded on a Hilbert space was done and related properties were

determined, and properties of disjoint support were also included. It was

shown that for bounded linear operators between Banach space of infi-

nite dimension, Bhatia-Semrl theorem verbatim of finite dimension was

extended under some additional assumptions.

Bottazi, Conde and Debmalya [88] studied the properties of the setOP,A =

{x ∈ SX : Px ⊥ Py} for any P ∈ L(X,Y ) and characterized the Hilbert

space of finite-dimension in relation to the new introduced concept. Bot-

tazi, Conde and Debmalya [88] focused on orthogonality of operators
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that were positive and those that were linear defined on a Hilbert space.

Isosceles orthogonality was generalized for two positive bounded linear

operators and some remarks between Birkhoff-James orthogonality and

Isosceles orthogonality were discussed. Properties of Isosceles orthogonal-

ity and Birkhoff orthogonality were further explored in Banach spaces.

Bottazi, Conde and Debmalya [88] concluded by establishing that Ror-

bert’s orthogonality is more agreeable than that of either Birkhoff-James

and Isosceles orthogonality.

In [22] Bhuwan and Prakash enlisted properties of Birkhoff-Orthogonality

and Carlsson orthogonality along with it, Bhuwan and Prakash [22] in-

troduced two new particular cases of Carlsson orthogonality and checked

some properties of orthogonality in relation to these particular cases in

normed spaces. Bhuwan and Prakash [22] showed how isosceles, Rorbert

and Pythagorean orthogonalities can be derived from the carlsson orthog-

onality and obtained two new orthogonality relations for the Carlsson.

In [73] Priyanka and Sushil gave the known properties of Birkhoff-James

orthogonality in Banach space. Concepts of orthogonality, the Gateaux

derivative and the sub-differential set of function of norm were discussed

and important distance formulas that were determined by characteriz-

ing Birkhoff-James orthogonality. Priyanka and Sushil [73] mentioned

the relation between orthogonality and properties that are geometric for

spaces that are normed. This lead to the determination of different re-

lated concepts like characterization of smooth points and extreme points,

sub differential sets and ψ-Gateaux derivertive sets. Priyanka and Sushil

[73] also characterize symetric property of orthogonality. Generalisations

of orthogonality in different Banach spaces were detemined together with
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their applications. The characterizations obtained were used to determine

distance formulas in certain Banach spaces.

In [87] Tanaka and Debmalya characterized the left and right symmetric

points in the terms of Birkhoff orthogonality in L(G,R) and K(G,R)

where G,R are complex Hilbert space and L(G,R) (K(G,R)) is the space

of all compact bounded mappings from G into R. Their main aim was

to improve the notion of local symmetry for a strong type of Birkhoff

orthogonality. It was shown that an element J in L(G,R) (K(G,R)) is

left symmetric for ⊥L(G) (⊥K(G)) in L(G,R) (K(G,R)) provided that J

is rank one operator, it turned out that J ∈ L(G,R) given that:

(i). J is right invertible such that Q is of infinite dimension or dimG >

dimR.

(ii). J is an isometric scalar multiple where G is of infinite dimension and

dimG < dimR while J ∈ K(G,R) is right symmetric for ⊥K(G)∈

K(G,R) if J has the dense range.

Debmalya, Ray and Kallol [35] explored the relation between the orthogo-

nality of bounded linear operators and the elements in the ground space.

It was shown that if Q,R ∈ L(W,Z) satisfy Q ⊥B R, and that there

exists w ∈ W so that Qw ⊥ Rz with ∥z∥ = 1, ∥QW∥ = ∥T∥, given

that W,Z are normed linear spaces. The concept of property Dn for a

Banach space was introduced and its relation with orthogonality of oper-

ators on Banach spaces was illustrated. Debmalya, Ray and Kallol [35]

further studied the property Dn for various polyhendra Banach spaces.

Their aim was to study Bhatia-Semri(BS) property in polyhedral Banach

spaces for bounded linear operators.
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For orthogonality of elementary operators, orthogonality of range and ker-

nel of normal derivations was determined by Anderson [5] . In the study,

Anderson [5] showed that if J and P are operators in L(Z) such that J

is normal and JP = PJ then for every Y ∈ L(Z),

∥δJ(Y ) + P∥ ≥ ∥P∥ where ∥.∥ is the usual operator norm. An-

derson [5] showed that if Q is isometric or is normal then the range

of δQ is orthogonal to its nullspace. Also Anderson [5] proved that if

Q is normal and has infinite number of points then the closed linear

space of the range and null space of δQ is not all of L(Z). Kittaneh

[65] extended the study and showed that given J and P are op-

erators in L(Z) such than J is normal, P is a Hilbert Schmidt

operator and P ∈ {J} then for all Y ∈ L(Z), ∥δJ(Y ) + P∥22 ≥

∥δJ(Y )∥22 + ∥P∥22 where ∥.∥2 is the Hilbert Schmidt operator norm.

Therefore, the range of δJ if orthogonal to the kernel of δJ for the Hilbert

Schmidt operators in the usual sense.

In the schatten p-norms Kittaneh [66] used the Gateaux differentiability

and the usual operator norm to determine the range and kernel orthog-

onality of elementary operators in relation to p-norms. In [37] Duggal

considered an elementary operator δab in which the operators a, b, x are

hyponormal, the operators a1, b2 are normal and a1 commutes with b2.

In [89] Turnsek studied the elementary ϕ;L(Z) → L(Z) defined by ϕ(V ) =∑k
i=1AiV Bi and ϕ∗(V ) =

∑k
i=1A

∗
iB

∗
i . Tursek [89] proved that

(i). When ϕ ≤ 1, then ∥ϕ(V ) − V + Q∥ ≥ ∥Q∥ for every V ∈

L(Z) and Q ∈ Kerϕ.

(ii). When
∑k

i=1AiA
∗
i ≤ 1,

∑k
i=1A

∗
iAi ≤ 1,

∑k
i=1BiB

∗
i ≤ 1 and
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∑k
i=1B

∗
iBi ≤ 1 then, for Q ∈ Kerϕ∩Kerϕ∗∩lp ∥ϕV −V +Q∥p ≥

∥Q∥p and ∥ϕ∗V − V +Q∥p ≥ ∥Q∥p for every V ∈ L(Z).

(iii). (Ri)
k
i=1 and (Ui)

k
i=1 be sequences of normal operators that commute

separately and let δ(Z) =
∑k

i=1RiV Ui. If δ(Z) ∈ l2 and Q ∈

kerδ ∩ l2, then ∥δ(Z) +Q∥22 = ∥δ(Z)∥22 + ∥Q∥22.

Turnsek [89] considered a normed algebra A and a linear operator ϕ :

A → A and proved that the range ϕ − 1 is orthogonal to its kernel if

∥ϕ∥ ≤ 1. This could also be applied to the case when ϕ;L(Z) → L(Z) is

an arbitrary elementary operator defined by ϕ(Z) =
∑k

i=1AiZBi.

Dragoljub [27] proved the orthogonality of an important elementary op-

erator in relation to the unitary invariant norms and their association

with the norm ideals of operators. The group consisted the mapping

Q : L(Z) → L(Z), Q(V ) : FV H + JV P where L(Z) denotes the group

of all bounded operators and F , H, J and P are normal operators so that

FJ = JF, HP = PH and KerF ∩ KerJ = KerH ∩ KerP = {0}.

Dragoljub [27] established this set in sense in which an orthogonality re-

sult holds.

Bachir and Hashem [17] presented a new class of finite operators and ex-

tended orthogonality results to some finite operators. In [17] some com-

mutativity results were also generalized. Their main goal was to investi-

gate the orthogonality of RanδA,B and KerδA,B for certain finite opera-

tors. It was proved that Ran(δA,B) is orthogonal to Ker(δA,B) where A

is dominant and B∗ is M-hyponormal. Duggal and Harste [38] studied

orthogonality and properties of range closure for some elementary op-

erators as proved for hyponormal operators or contractions on Hilbert
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spaces.

Okelo and Agure [72] presented various types and aspects of orthogonal-

ity in spaces that are normed. In [72] the range and kernel orthogonality

results for elementary operators were given and the operators that char-

acterize them were then provided. In [13] Bouali and Bouhafsi exhibited

pair (Q,R) of operators such that orthogonality of δQ,R is valid for the

usual operator norm. Range and nullspace of δQ,R results were obtained

in relation to the group of unitarily invariant norms.

Bachir and Nawal [16] studied and characterized the range-kernel orthog-

onality of the points C1(H), the trace class operators in nonsmoothness

case and gave a counter example. In [70] Okelo characterized orthogonal-

ity of operators that are elementary in groups that attain norms. Okelo

[70] gave conditions for operators to be norm attainable in Hilbert spaces.

In [70] range-kernel orthogonality results were given for elementary oper-

ators in norm-attainable classes.

1.2 Basic concepts

This section has mathematical concepts that will be used throughout this

note. In particular we define field, vector space, norm, Banach space,

Hilbert space, inner product, and some operators among other terms.

Definition 1.1 (67, Section 1). A field F is a non-empty set with two

operations called multiplication and addition denoted by (.) and + such

that the following axioms hold;
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(i). both p+ r and p.r are in F, for all p, r ∈ F.

(ii). p + (r + i) = (p + r) + i and p.(r.i) = (p.l).i, for all (p, r, i) ∈ F-

associativity property.

(iii). Commutativity of addition and multiplication: p + r = r + p and

p.r = r.p, for all p, r,∈ F.

(iv). Existence of additive and multiplicative identity: there exist two

different elements 0 and 1 in K such that p + 0 = p and p.1 = p,

for all p ∈ F.

(v). Existence of additive inverses: for every p ∈ F, there exist an el-

ement in F, denoted by −p, called the additive inverse of p, such

that p+ (−p) = 0.

vi. Existence of multiplicative inverses: for every p ̸= 0 in F, there

exist an element in F denoted by p−1 or 1
p
called the multiplicative

inverse of a, such that p.p−1 = 1.

vi. Distributivity of multiplication over addition: p.(r + i) = (p.r) +

(p.i), for every p, r, i ∈ F.

Definition 1.2 (76, Section 1). A vector space over a field F is a non-

empty set Z with two binary operations, addition mapping Z ×Z into

Z and scalar multiplication mapping F×Z into Z satisfying the following

properties ;

(i). Closure of addition: g + q = q + g for all g, q ∈ Z.

(ii). Associativity of addition: g+(q+h) = (g+q)+h for every g, q, h ∈

Z.
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(iii). There is an element denoted by 0 (called the zero vector) such that

g + 0 = 0 + g = g, for all g ∈ Z.

(iv). For every q ∈ Z, there exist an element denoted by −q such that

q + (−q) = (−q) + q = 0.

(v). 1 · g = g for all g ∈ Z where I is the identity for F.

(vi). (µη)g = µ(ηg) for every g ∈ Z and µ, η ∈ F.

(vii). Distributivity: (µ + η)g = µg + ηg, for every g ∈ Z and µ, η ∈ F

and µ(g + q) = µg + µq, for all g, q ∈ Z and µ, η ∈ F.

Example 1.3 (7, example 1). Let Z= Rn be a group of all real numbers.

This is a linear space over the reals. We have (i1, ..., in) + (d1, ..., dn) =

(i1 + d1, ..., in + dn) and a(i1, ..., in) = (ai1, ..., ain).

Example 1.4 (67, example 3). Suppose Z=C be the group of all com-

plex numbers. This is a linear space over complex numbers. Addition

and scalar multiplication are defined as in the example above.

Example 1.5 (76, example 1). Suppose Z be a collection of all se-

quences that are not finite (i1, i2, ...) of real numbers with addition being

coordinate-wise, that is (i1, i2...) + (d1, d2...) = (i1 + d1, i2 + d2, ...) and

similarly for scalar multiplication.

Example 1.6 (7, example 2). If H is a set and let Z be the collection

of real valued bounded functions on H. We define i + z by (i + z)(s) =

i(s) + z(s) for each s ∈ H and ai by (ai)(s) = ai(s) for each s ∈ H.

Definition 1.7 (8, Definition 3.0). Let Z be a non empty set. A func-

tion d : Z×Z → R is a metric on Z if the following properties are satisfied:
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(i). d(n, q) ≥ 0 and d(n, q) = 0, if and only if n = q for every n, q ∈ Z.

(ii). d(n, q) = d(q, n).

(iii). d(n, h) ≤ d(n, q) + d(q, h)

The ordered pair (Z, d) is called a metric space.

Definition 1.8 (8, Definition 3.1). Let X be a linear space over F .Then

a norm on X is a non-negative real-valued function ∥.∥ : X → R such

that ∀ w, z ∈ X and η ∈ F the following properties are satisfied:

(i). ∥w∥ ≥ 0 and ∥w∥ = 0, if and only if w = 0.

(ii). ∥ηw∥ = |η|∥w∥.

(iii). ∥w + z∥ ≤ ∥w∥+ ∥z∥

The ordered pair (X, ∥.∥) is called a normed space.

Definition 1.9 (67, Definition 3.5). If Z is a vector space with norm ∥.∥

and d : Z × Z → R is a metric defined by d(w.z) = ∥w − z∥, then d is

called the metric associated with the norm.

Definition 1.10 (76, Definition 3.15). A Banach space is a complete

normed linear space.

Definition 1.11 (8, Definition 3.18). Let Z be a real or complex vector

space. An inner product on Z is a function ⟨., .⟩ : Z × Z → J such that

∀ w, z, k ∈ Z and λ, β ∈ J ; if it satisfy:

(i). ⟨w,w⟩ ≥ 0 and ⟨w,w⟩ = 0, if and only if w = 0.
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(ii). ⟨αw + βz, k⟩ = α⟨w, k⟩+ β⟨z, k⟩.

(iii). ⟨λw, z⟩ = λ⟨w, z⟩.

(iv). ⟨w, z⟩ = ⟨z, w⟩.

The ordered pair (X, ⟨., .⟩) is called an inner product space.

Example 1.12 (67, example 2). Let X = Fn for w = (w1...wn) and

z = (z1...zn) in X define ⟨w, z⟩ =
∑n

i=1wizi.

Example 1.13 (8, example 1). Let X = l0 the space of sequences of real

or complex numbers that are finitely non-zero. For w = (w1...wn) and

z = (z1...zn) in X define ⟨w, z⟩ =
∑∞

i=1wizi.

Example 1.14 (6, example 4). Let Z = l2 the space of all sequences

w = (w1, w2...) of real or complex numbers for
∑∞

i=1 |wi|2 < ∞. For

w = (w1...wn) and z = (z1...zn) in X define ⟨w, z⟩ =
∑∞

i=1wizi.

Example 1.15 (7, example 1). Let Z = C[q, s] the space of all continuous

complex valued function on C[q, g] for q, g ∈ Z define ⟨q, g⟩ =
∫ g
q
qtgtdt.

Definition 1.16 (67, Definition 3.21). Suppose Z is a real or complex

valued vector space with an inner product ⟨., .⟩. Then X is an inner

product space.

Definition 1.17 (76, Definition 3.26). A Hilbert space H is a complete

inner product space.

Remark 1.18. Any Hilbert space is a Banach space, but the converse is

not necessarily true.

Example 1.19. F with the standard inner product is a Hilbert.
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Definition 1.20 (6, Definition 3.6-1). An operator P is said to be linear

if, for every pair of vectors w and z and scalar λ, P (l+ d) = P (l) + P (d)

and P (λl) = λP (l).

Definition 1.21 (67, Definition 3.2-1). Two vectors w, z ∈ H are called

orthogonal, denoted by w ⊥ z if ⟨w, z⟩ = 0.

Definition 1.22 (70, Section 1). Consider a normed space D and let

T :D → D. T is said to be an elementary operator if it can be represented

in the following form T (X) = Σn
i=1SiXPi for all X ∈ D where Si and Pi

are fixed in D.

Example 1.23. Let S = L(Z) for S, P ∈ L(Z) we define particular

elementary operator.

(i). The left multiplication operator LS : L(Z) → L(Z) by LS(X) =

SX, ∀ X ∈ L(Z).

(ii). The right multiplication operatorRP : L(Z) → L(Z) by RP (X) =

XP , ∀ X ∈ L(Z).

(iii). The generalized derivation by δS,P = LS −RP .

(iv). The basic elementary operator by MS,P (X) = SXP , ∀ X ∈ L(Z).

(iv). The Jordan elementary operator by µS,P (X) = SXP+PXS, ∀ X ∈

L(Z).

Definition 1.24 (72, Section 1). The range of an operator P : L(H) →

L(H) is defined as Ran(T ) = {y ∈ L(H) : y = T (x) ∀ x ∈ L(H)}.

Definition 1.25 (72, Section 1). The kernel of an operator T : L(H) →

L(H) is defined as Ker(T ) = {x ∈ L(H) : T (x) = 0 ∀ x ∈ L(H)}.
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Definition 1.26 (92, Section 2). A bounded linear operator S on a

Hilbert space H is called finite if ∥I−SX−XS∥ ≥ 1 for each X ∈ L(H).

Definition 1.27 (13, Section 2). A proper two sided ideal J in L(H)

is called a norm ideal if there is a norm on J possessing the following

properties:

(i) (J, |∥.∥|) is a Banach space.

(i) |∥SV P∥| ≤ ∥S∥|∥V ∥|∥P∥ for every S, P ∈ L(H) and for every

V ∈ J .

(i) |∥V ∥| = ∥V ∥ for V a rank one operator.

1.3 Statement of the problem

Let Ω be a normed space and consider an elementary operator T on Ω.

Various notions of orthogonality conditions have been obtained for ele-

mentary operators on normed spaces. However, orthogonality conditions

have not been obtained when the elementary operators are finite in com-

plex spaces. In this study therefore we considered finiteness of elementary

operators and established orthogonality conditions for these operators in

terms of James-Birkhoff orthogonality when the normed spaces are com-

plex.

1.4 Objectives of the study

The objectives of the study are to:
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(i). Characterize finiteness of elementary operators in complex normed

spaces.

(ii). Establish orthogonality conditions for finite elementary operators in

complex normed spaces.

(iii). Determine Birkhoff-James orthogonality for finite elementary oper-

ators in complex normed spaces.

1.5 Significance of the study

Orthogonality in inner product spaces is a binary relation that can be

expressed in many ways without necessarily mentioning the inner product

space. In normed spaces, great part of such definitions have also sense.

This simple observation is at the base of many notions of orthogonality

in these more general structures. The results obtained from this study

are useful in quantum theory in estimation of the distance between the

identity operator and the commutators.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

Orthogonality is linked with uniform convexity, strict convexity and smooth-

ness of the space which are the most important geometric characteristics

of normed linear spaces. In this chapter, we have reviewed literature

related to finite operators, orthogonality in normed spaces and orthogo-

nality of elementary operators.

2.2 Finite operators

A bounded linear operator T on a normed space Ω is called finite if ∥I −

TX −XT∥ ≥ 1 for each X ∈ L(Ω). Williams [92] showed that the group

of finite operators involves operators that are normal, is uniformly closed

and involves operators with a completely continuous direct summand, and

every Banach algebra with an involution satisfying properties of adjoint

characterized by every member. The results implied that the group of
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operators with a reducing subspace of finite dimension is non-uniformly

dense. It was then proved that the group of self-commutators is uniformly

closed. The following are some of William’s results.

Theorem 2.1. [92, Theorem 4] The following properties are equivalent

on an operator T :

(i). T is finite.

(ii). infx ∥I − TX −XT∥ = 1.

(iii). There exists f ∈ ℘ such that f(TX) = f(XT ) for every X ∈ L(H).

Theorem 2.1 shows that the class of finite operators involves every op-

erator with a completely continuous direct summand and every normal

operator but did not establish orthogonality conditions for finite opera-

tors.

Elalami [39] gave a new class of finite operators through the concept of the

reducing approximate spectrum of an operator. In this case the concept

of completely finite operators was introduced. Those are operators A such

that AE is finite for any orthogonal reducing subspace E of A. For those

operators Elalami [39] gave characterizations and proved that dominant

operators are completely finite. The following are Elalami’s main results:

Proposition 2.2. [39, Proposition 1.1] Let S ∈ L(H). If δraS is nonempty,

then S is finite.

Proposition 2.2 shows that an operator A is finite if the reducing ap-

proximate spectrum of A is not empty but but did not give a detailed

description of finite operators.
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Proposition 2.3. [39, Proposition 2.1] If ∥A∥ = r(A) then dist(A,RδA) =

∥A∥.

Proposition 2.3 shows that the range of normal derivation of A is orthog-

onal to it’s kernel if the norm of A is equivalent to the r(A) but but did

not give a detailed description of finite operators.

Duggal [36] improved the Du Hong-Ke inequality to ∥QZQ− Z +G∥ ≥

∥Z∥ for all operators Z. Indeed, Duggal [36] proved that Du Hong-Ke is

equivalent to Anderson inequalities and it was shown that the inequality

of Du Hong-Ke is valid for unitary norms that are invariant. The following

are Duggal’s main results.

Theorem 2.4. [36, Theorem 1] Suppose G is an operator that is normal

and that R(G,G∗)(S) = 0 for every S ∈ L(H) then ∥R(G,G∗)+S∥ ≥ ∥S∥

for all X ∈ L(H)

Theorem 2.4 Shows that the range of G and its adjoint is orthogonal to its

null space if range of G and its adjoint is equivalent to zero but the study

was limited to the characterization of finiteness of elementary operators.

Corollary 2.5. [36, Corollary 1] If Q and N are normal operators such

that R(Q,N)(S) = 0 for every S ∈ L(H), then ∥R(Q,N)+S∥ ≥ ∥S∥ for

all X ∈ L(H).

Corollary 2.5 considered normal operators and showed that the range of

δQ,N is orthogonal to its null space but did not characterize finiteness of

this elementary operators.
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Corollary 2.6. [36, Corollary 2] Suppose Q,G ∈ L(H) are normal opera-

tors such that C(Q,G)(S) = 0 for some S ∈ L(H), then ∥C(Q,G)+S∥ ≥

∥S∥ for all X ∈ L(H).

Corollary 2.6 considered normal operators their orthogonality but did not

characterize finiteness of this elementary operators.

In [86] Takayuki, Masatoshi and Takeaki introduced ”class A” operators

provided by the inequality of an operator which contained the group of

paranormal operators and the group of log-hyponormal operators. It was

discovered that their results consists the proof of Ando’s results where ev-

ery log-hyponormal operator is paranormal. New classes linked to class A

operators and paranormal operators were also introduced. The following

are some of their results:

Theorem 2.7. [86, Theorem 2] 1. All log-hyponormal operators are class

A(k) operators. 2. All invertible class A operators are class A(k) opera-

tors to K ≥ 1.

Theorem 2.7 shows that an invertible A operators are A(k) operators and

log-hyponormal operators are A(k) operators and they are finite operators

but did not give a detailed description of finite operators.

Salah [79] gave a set of finite operators of the form S+G where S ∈ L(H)

and G is compact. Salah [79] proved that wo(δS,P ) = coδ(δS,P ), where

wo(δS,P ) is the the numerical range of δS,P and coδ(δS,P ) is the the convex

hull of δ(δS,P ) for certain operators S, P ∈ L(H), δS,P is the operator on

L(H) given by δS,P = SX − XP , X ∈ L(H). The following are salah’s

main results:
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Theorem 2.8. [79, Theorem 3] F (H) involves the following operators.

(i). S ∈ L(H) such that δw(S) ∩ δ(S) ̸= 0.

(ii). dominant operators.

Theorem 2.8 shows that dominant operators are finite but did not give a

detailed description of finite operators.

Theorem 2.9. [79, Theorem 3] F (H) involves the following operators.

(i). ∥Q∥ = w(Q) where w(Q) is the numerical radius of Q.

(ii). Q ∈ L(H) such that Q satisfies C.

Theorem 2.9 shows that if the norm of Q is equal to the numerical radius

of Q then Q is finite but did not give a detailed description of finite

operators.

Corollary 2.10. [79, Corollary 9] F (H) involves the following operators.

(i). Q = J +G, G compact and J dominant.

(ii). Q = J +G, G compact and J ∈ µ .

Corollary 2.10 shows that a compact operator G plus dominant operator

J are finite but did not give a detailed description of finite operators.

In [81] Salah characterized the operators Q ∈ L(H) that is orthogonal to

the range of kerδS,P for operators which are not normalS, P ∈ L(H) in

the sense of James. The following are some of salah’s main results.
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Corollary 2.11. [81, Corollary 2.2] Suppose S, P ∈ L(H) such that

Sm = I and Pm = I for some integer m. Then ∥SX −XP −Q∥ ≥ ∥Q∥

for all X ∈ L(H) for all Q ∈ kerδS,P .

Corollary 2.11 considered normal operators and showed that the range of

δS,P is orthogonal to its null space but did not characterize finiteness of

these elementary operators.

Bachir [15] gave results on orthogonality log-hyponormal operators and

dominant operators, then results on commutativity were obtained. The

following are Bachir’s main results:

Proposition 2.12. [15, Proposition 3.1] Suppose S is dominant and that

Q is a normal operator and that SQ = QS, then for all λ ∈ δp(Q),

∥λ∥ ≤ dist(Q,R(δS))

Proposition 2.12 shows that dominant operators are finite but did not

characterize finiteness of elementary operators.

Proposition 2.13. [15, Proposition 3.3] Let S be dominant and Q be

a normal operator and that SQ = QS, then for all λ ∈ δp(Q), ∥λ∥ ≤

dist(Q,R(δS))

Proposition 2.13 showed that dominant operators are finite but did not

characterize finiteness of these elementary operators.

Theorem 2.14. [15, Theorem 3.4] Suppose S is dominant and P ∗ is

p-hyponormal operator or log-hyponormal, then given Q ∈ ker(δS,P ), we

have ∥Q∥ ≤ dist(Q,R(δS,P ))
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Theorem 2.14 shows that dominant operators and log-hyponormal are

finite but did not give a detailed description of finite operators.

In [80] Salah described paranormal operators and analyzed that they are

finite and presented some other examples of operators that are finite. An

extension of inequality ∥I−AX−XA∥ ≥ 1 was also given. The following

are some of salah’s main results.

Theorem 2.15. [80, Theorem 1.7]

(i) A log-hyponormal operator is a class A operator.

(ii) A class A operator is a paranormal operator.

Theorem 2.15 shows that log-hyponormal operators, paranormal oper-

ators and class A operators are finite operators but did not establish

orthogonality conditions for finite operators.

Corollary 2.16. [80, Corollary 2.1] The following are finite operators.

(i). Hyponormal operators,

(ii). p-Hyponormal operators,

(iii). Class A operators,

(iv). Log-hyponormal operators.

Corollary 2.16 shows that hyponormal, p-hyponormal, class A operators

and log-hyponormal operator are finite but the study was limited to or-

thogonality conditions for finite operators.
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Lemma 2.17. [80, Lemma 2.1] If S is paranormal and if Q is a normal

operator and that SQ = QS, then for all λ ∈ δP (Q), |λ| ≤

∥Q− (SX −XS)∥ for all X ∈ L(H).

Lemma 2.17 shows that every paranormal operator is finite given that T

is normal and λ ∈ δP (Q) but did not establish orthogonality conditions

for finite elementary operators.

Theorem 2.18. [80, Theorem 2.2] If G is paranormal, then for every

normal operator Q such that GQ = QG, ∥Q − (GX − XG)∥ ≥

∥Q∥ for all X ∈ L(H).

Theorem 2.18 shows that a paranormal operator is finite for every nor-

mal operator Q but did not establish orthogonality conditions for finite

elementary operators.

Corollary 2.19. [80, Corollary 2.2] If S ∈ L(H) is paranormal then

J = S +G is finite, where G is a compact operator.

Corollary 2.19 shows that a paranormal operator + compact operator is

finite but the study was limited to establishment of orthogonality condi-

tions for these finite operators.

Theorem 2.20. [80, Theorem 2.4] IfM is p-hyponormal(resp.log-hypornomal)

and if V ∗ is p − hypornormal(resp.log − hypornomal), then ∥Q −

(MX −XM)∥ ≥ ∥Q∥ for all X ∈ L(H) and Q ∈ kerδM,V .

Theorem 2.20 shows log-hyponormal operators are finite and it is shown

that Ran(δM,V ) is orthogonal to Ker(δM,V ) but the study was limited to

establishment of orthogonality conditions for these finite operators.
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Bouzenda [13] proved that a spectraloid operator is finite and that the

operator of the form J+C is also finite given that C is a compact operator.

Bouzenda [13] presented some results on generalized finite operators and

gave a new set of finite operators. Then orthogonality results of some

operators were given. The following are Bouzenda’s main results:

Theorem 2.21. [13, Theorem 1] Let S ∈ L(H) be convexoid, then S is

finite.

Theorem 2.21 shows convexoid operators are finite but did not give a

detailed description of finite operators.

Corollary 2.22. [13, Corollary 1] The following operators are finite

(i). Hyponormal operators,

(ii). Transaloid operators,

(iii). Paranormal operators,

(iv). Normaloid operators.

Corollary 2.22 shows hyponormal operators, transaloid operators, para-

normal operators and nomaloid operators are finite but did not give a

detailed description of finite operators.

Corollary 2.23. [13, Corollary 2] Let S ∈ Y be convexoid. Then J =

S + C is finite, where C is a compact operator.

Corollary 2.23 shows that convexoid operator S plus a compact operator

K is finite but did not give a detailed description of finite operators.
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Theorem 2.24. [13, Theorem 4] Let S ∈ L(H) then for every normal

operator Q such that SQ = QS, we have ∥SX −XS −Q∥ ≥ ∥Q∥ for all

X ∈ L(H).

Theorem 2.24 considered normal operators and showed that the range

of δS is orthogonal to its nullspace but did not characterize finiteness of

these elementary operators.

Theorem 2.25. [13, Theorem 2] Let S, P ∈ L(H). If S, P ∈ Y ∗, then

∥SX −XS −Q∥ ≥ ∥Q∥ for every X ∈ L(H) and for every Q ∈ kerδS,P .

Theorem 2.25 shows that the range of δS,P is orthogonal to KerδS,P but

did not characterize finiteness of these elementary operators.

Hadia [48] presented some properties of finite operators and gave some

group of operators which are in the class of finite operators and found for

which condition A +W is a finite operator in L(H ⊕H). The following

are Hadia’s main results:

Proposition 2.26. [48, Proposition 2.2] Let A,B ∈ L(H), then AB ∈

F (H).

Proposition 2.26 shows some group of operators that are in the group of

finite operators but did not characterize finiteness of elementary opera-

tors.

Lemma 2.27. [48, Lemma 3.3] SupposeM ∈ L(H), ifM is a posinormal

operator then M ∈ F (H).

Lemma 2.27 shows that posinormal operators are finite but did not give

a detailed description of finite operators.
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Lemma 2.28. [48, Lemma 3.4] Suppose J ∈ L(H), if J is a normaloid

operator then J ∈ F (H).

Lemma 2.28 shows that nomaloid operators are finite but did not char-

acterize finiteness of elementary operators.

Corollary 2.29. [48, Corollary 3.8] Let Q ∈ L(H), such that An = 1,

for each n ∈ N, then ∥QX −XQ− 1∥ ≥ ∥1∥ ∀ X ∈ L(H) i.e Q ∈ F (H).

Corollary 2.29 shows orthogonality of elementary operators but did not

characterize finiteness of these elementary operators.

In [78] a set of finite operators was presented by Salah which consists of

the set of paranormal operators and proved the range-kernel orthogonality

for paranormal operators. The following are Salah’s main results:

Theorem 2.30. [78, Theorem 2.5] Suppose N ∈ L(H) is spectraloid,

then N is finite.

Theorem 2.30 shows that spectraloid operators are finite but did not

characterize finiteness of elementary operators.

Lemma 2.31. [78, Lemma 2.7] If J is normal operator and Q is class y

such that QJ = JQ then for every λ ∈ δp(J) we have ∥J −QX −XQ∥ ≥

∥J∥ for all X ∈ L(H)

Lemma 2.31 considered a class y operator and showed that the range of

δQ is orthogonal to its null space but did not characterize finiteness of

elementary operators.
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Theorem 2.32. [78, Theorem 2.8] Suppose Q is class y then for all

normal operator J such that QJ = JQ we have ∥J −QX −XQ∥ ≥ ∥J∥

∀ X ∈ L(H).

Theorem 2.32 considered a class y operator and showed that the range of

δA is orthogonal toKerδA but did not characterize finiteness of elementary

operators.

Corollary 2.33. [78, Corollary 2.10] If S ∈ L(H) is a class y. Then

J = S +Q is finite, where Q is a completely continuous operator.

Corollary 2.33 shows a spectraloid plus a completely continuous operator

are finite but did not characterize finiteness of elementary operators.

Salah and Smail [84] proved that a paranormal operator is finite and

presented properties of finite operators. The following are Salah’s main

results:

Theorem 2.34. [84, Theorem 2.1] Suppose T ∈ L(H) be paranormal,

then T is finite.

Theorem 2.34 shows that paranomal operators are finite but did not char-

acterize finiteness of elementary operators.

2.3 Orthogonality in normed spaces

Kapoor and Jagadish Prasad [59] provided new characterization of inner

product spaces and some proofs similar to the existing characterizations

were given. However, it was proved that in a vector space in which a norm
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is defined both Pythagorean and Isosceles orthogonalities are unique. The

following are some of their results:

Theorem 2.35. [59, Theorem 3] (a) Isosceles orthogonality in Y is dis-

tinctive given that Y is strictly convex. (b) Pythagorean orthogonality is

distinctive.

Theorem 2.35 characterizes uniqueness of Isosceles and Pythagorean or-

thogonality but did not determine Birkhoff-James orthogonality for finite

elementary operators.

Theorem 2.36. [59, Theorem 4] For space Ω that is normed the following

are equivalent:

(i). Ω is an inner product space,

(ii). q, g ∈ Ω, q ⊥P g ⇒ g ⊥I q,

(iii). q, g ∈ Ω, q ⊥I g ⇒ g ⊥P q.

Theorem 2.36 shows that in a linear space that is defined by an inner prod-

uct both Pythagorean and Isosceles orthogonalities have similar proper-

ties but did not determine Birkhoff orthogonality for finite elementary

operators.

Theorem 2.37. [59, Theorem 5] Given a normed linear space Ω the

following are equivalent:

(i). Ω is an inner product space,

(ii). q, g ∈ Ω, q ⊥P g ⇒ g ⊥J q,
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(iii). q, g ∈ Ω, q ⊥J g ⇒ g ⊥P q.

Theorem 2.37 shows that in a vector space in which an inner product is

defined Pythagorean orthogonality is equivalent to Birkhoff-James orthog-

onality but did not establish orthogonality conditions for finite elementary

operators.

Theorem 2.38. [59, Theorem 5] For a space Ω that is normed the fol-

lowing are equivalent:

(i). Ω is an inner product space

(ii). j, q ∈ Ω, j ⊥J q ⇒ q ⊥I j.

(iii). j, q ∈ Ω, j ⊥I q ⇒ q ⊥J j.

Theorem 2.38 shows that in inner product spaces Isosceles orthogonal-

ity and Birkhoff-James orthogonality are equivalent but did not establish

orthogonality conditions for finite elementary operators.

Diminnie, Raymond and Edward [26] defined another type orthogonality

in normed spaces that involves pythagorean orthogonality and Isosceles

orthogonality and it was shown that a new orthogonality is homogenous

in an inner product space. The following are their main results:

Theorem 2.39. [26, Theorem 1] If α-orthogonality is homogenous or

additive, then the space (Y, ∥.∥) is a real inner product space.

Theorem 2.39 establishes the homogeneity condition for α-orthogonality

and it was shown that α-orthogonality is homogenous for a inner prod-

uct space but did not establish the finiteness condition for elementary

operators in normed spaces .
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Theorem 2.40. [26, Theorem 1.2] If α-orthogonality is homogenous,

then (g ⊥ h)(a) if ∥i − l∥2 = ∥i∥2 + ∥l∥2 i.e α-orthogonality is equiv-

alent to pythagorean orthogonality.

Theorem 2.40 establishes the homogeneity condition for α-orthogonality

and it was shown that α-orthogonality is homogenous if and only if it is

equivalent to Pythagorean orthogonality but did not establish the finite-

ness of elementary operators in normed spaces .

Koldobsky [56] showed that a linear operator J : Y → Y preserves orthog-

onality given that J is isometric and is multiplied by a positive constant.

The following are some of his main result:

Lemma 2.41. [56, Lemma 1] Suppose α ∈ D(y, z), a, b ∈ R. Then

(i). y∗(ay + bz) does not rely y∗ ∈ S(y + az).

(ii). y+αz ⊥ ay+bz if if y∗(ay+bz) = 0 for every y∗ ∈ S(y+az).

Lemma 2.41 shows that y+αz ⊥ ay+ bz if and only if y∗(ay+ bz) =

0 but did not determine orthogonality conditions for finite elementary

operators.

Lemma 2.42. [56, Lemma 2] Let α be a group of numbers such that

w + az ⊥ z is a closed segment [m,M ] in R and ∥w + αz∥ = ∥w +mz∥.

Lemma 2.42 shows convexity of the function α → ∥w + αz∥ but did not

determine Birkhoff orthogonality for finite elementary operators.

Theorem 2.43. [56, Theorem 3] Let Y be a Banach space and J : Y → Y

be a linear operator preserving orthogonality. Then J = kV where k ∈

R and V is an isometry.
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Theorem 2.43 shows that a linear map J : Y → Y preserves orthog-

onality provided that J is an isometry but did not determine Birkhoff

orthogonality for finite elementary operators.

Alonso and Maria [4] studied geometric properties of an orthogonality

relation based on a classical property of right angles defined in normed

linear spaces but did not determine Birkhoff orthogonality for finite ele-

mentary operators.

Jacek [53] defined an approximate Birkhofff orthogonality relation in

normed spaces. Jacek [53] related it with that given by Dragomir and

established some properties .It was shown that in smooth space approx-

imate Birkhofff orthogonality is equal to the approximate orthogonality

from the semi-vector in which an inner product is defined. The following

are Jacek’s main results:

Proposition 2.44. [53, Proposition 2.2] If Y is an inner product space

then for arbitrary ε ∈ [0, 1], w ⊥ε z ⇔ w ⊥ε
B z.

Proposition 2.44 shows that w is orthogonal to z in a space endowed with

an inner product implies that w is Birkhoff-James orthogonal to z but the

study was limited to establishment of orthogonality conditions for finite

elementary operators.

In [28] Dragoljub introduced ψ Gateaux derivative for operators to be or-

thogonal(in the sense of James) to the operator in both spaces C1 and C∞

(nuclear and compact operators on a Hilbert space). Further Dragoljub

[28] applied these results to prove that there exists a normal derivation

δA such that ranδA ⊕ kerδA ̸= C1 and a related result concerning C∞.

The following are some of their main results:
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Theorem 2.45. [28, Theorem 1.4] The vector z is orthogonal to w in

terms of James if and only if infψDψ,x(z) ≥ 0.

Theorem 2.45 characterizes orthogonality in Banach spaces (without care

of smoothness) via ψ-Gateaux derivative but did not determine Birkhoff-

James orthogonality for finite elementary operator.

Fathi [40] adopted the notion of orthogonality and established a charac-

terization for orthogonality in the spaces Lpq(K), ∞ > P ≥ 1, given that

Q is a group of integers that are non-negative. Finally, orthogonality in

the Hilbert spaces L2
s(K) was characterized through inner products but

did not establish orthogonality conditions for finite elementary operators.

Hendra and Mashadi [49] discussed some types of orthogonalities in 2-

normed spaces and their drawbacks. Hendra and Mashadi [49] also for-

mulated new definitions of orthogonality that improved the existing ones.

In the standard 2-normed spaces their types of orthogonality are similar

with the usual one. The following are some of the main results obtained:

Proposition 2.46. [49, Theorem 3.3] Suppose (Y, ∥.∥) is the standard

2-normed space of dimension 3 or higher. If v ⊥G w, then v ⊥ w.

Proposition 2.46 shows that w is orthogonal to v if w is general orthogonal

to v but did not establish orthogonality conditions for finite elementary

operators.

Madjid and Mohammad [69] introduced the notion of orthogonality con-

stant mappings in isosceles orthogonal spaces and established stability

of orthogonal constant mappings then finally the stability of periderized
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quadratic equation f(w+ v)+ g(w+ v) = h(w)+h(v) was studied. Mad-

jid and Mohammad [69] dealt with isosceles orthogonality and in their

case isosceles orthogonal space was a normed space Y with the isosceles

orthogonality. The following are some of their main results:

Lemma 2.47. [69, Lemma 2.2] Suppose K : Y → Z is an orthogonality

constant mapping. If w, z ∈ Y and ∥w∥ = ∥z∥ then k(w) = k(z).

Lemma 2.47 shows constant mappings in isosceles orthogonal spaces but

did not determine Birkhoff-James orthogonality for finite elementary op-

erators.

Shoja and Mazaheri [85] investigated properties of the general orthogonal-

ity in Banach spaces and obtained some results of general orthogonality

in Banach spaces are the same as those of orthogonality in Hilbert spaces.

The relation between this concept in smooth spaces and sense of Birkhoff-

James was also considered. The following are some of the main results

obtained:

Theorem 2.48. [85, Theorem 2.2] If R is a normed space. Then the

following properties are true.

(i). If k, r ∈ R, k ⊥G r, then r ⊥BG k.

(ii). If k = 0 ∈ R is a normal element, r ∈ R and k ⊥BG r, then k ⊥G r.

Theorem 2.48 shows that j is Birkhoff-James orthogonal to r if k is general

orthogonal to r but did not establish orthogonality conditions for finite

elementary operators.
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Theorem 2.49. [85, Theorem 2.7] If D is a real Banach space, x ∈ D

and Q ⊆ D. Let the General orthogonality be G-additivity. Then there

exist a unique yo ∈ Q such that x− y0 ⊥G y.

Theorem 2.49 shows some properties of the General orthogonality in Ba-

nach spaces but did not establish orthogonality conditions for finite ele-

mentary operators.

Jacek [52] considered Birkhoff-James orthogonality in a space in which a

norm is defined and a class of linear mappings that approximately preserve

this relation. Some related stability problems were stated. The following

are Jacek’s main results:

Theorem 2.50. [52, Theorem 2.9] Let Z be a normed space. If there

exist an inner product space S and a transformation r from Z into S or

from S onto Z such that r is Birkhoff-James orthogonal. Then Z is an

inner product space.

Theorem 2.50 shows Z is in a vector space with an inner product if r pre-

serves the Birkhoff-James orthogonality but did not determine Birkhoff-

James orthogonality for finite elementary operators.

Horst Martin [46] showed that Q : W → Z preserves Isosceles orthogo-

nality provided it is an isometric scalar multiple. The following are his

main results:

Lemma 2.51. [46, Lemma 4] SupposeW and Z are normed linear spaces.

Given a linear transformation Q : W → Z is Isosceles orthogonal, then it

also Birkhoff orthogonal.
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Lemma 2.51 establishes condition for an operator to preserve Isosceles

orthogonality, it is shown that if an operator preserves Isosceles orthog-

onality, then it preserves Birkhoff orthogonality but did not establish

orthogonality conditions for finite elementary operators.

Theorem 2.52. [46, Theorem 5] Suppose Q and Z are normed linear

spaces. A linear map R : Q → Z is Isosceles orthogonal given by R is a

linear isometric scalar multiple.

Theorem 2.52 establishes condition for an operator to preserve Isosceles

orthogonality and it is shown an operator preserves Isosceles orthogonal-

ity given that R is a linear isometric scalar multiple but this study was

limited to establishment of orthogonality conditions for finite elementary

operators.

Kallol and Hossein [61] obtained properties for a linear transformation

T to be orthogonal to other linear transformation A in terms of James.

Also it was shown that if T is orthogonal to A and O ̸∈ δp(A) then

sup{|(Tu, v)| = ∥u∥ = 1 and (Au, v) = 0}. It was proved that the com-

plex scalar λ0 is characterized by the fact that there exist {xn}, ∥xn∥ = 1

such that ((T − λoA)xn , Axn) → 0 and ∥(T − λ0A)xn∥ → ∥T − λ0A∥.

Theorem 2.53. [61, Theorem 1] Suppose Q and G are two linear trans-

formations on a complex Hilbert space Z. Then there exist a complex

scalar λ0 such that ∥Q− λ0G∥ = ∥Q− λG∥.

Theorem 2.53 shows that if T is orthogonal toA andO ̸∈ δp(A) but did not

determine Birkhoff-James orthogonality for finite elementary operators.
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Dragomir and Kikianty [29] introduced types of orthogonality in form of

2-HH norms and then a further study on 2-HH norms was done. Inner

product spaces were characterized together with with strictly convexity

of spaces. The following are some of their main results:

Theorem 2.54. [29, Theorem 3.5] Suppose W is a normed linear space.

Then HH-P orthogonality is homogenous provided W is an inner product

space

Theorem 2.54 shows that HH-P orthogonality is homogenous given that

W is an inner product space but did not determine Birkhoff-James or-

thogonality for finite elementary operators.

Theorem 2.55. [29, Theorem 3.6] If W is a normed linear space. Then

HH-I orthogonality is homogenous provided W is an inner product space

Theorem 2.55 shows that HH-I orthogonality is homogenous given that

W is an inner product space but did not determine Birkhoff-James or-

thogonality for finite elementary operators.

Lemma 2.56. [29, Lemma 3.1] The additivity and homogeneity of HH-P

and HH-I orthogonality are equil.

Lemma 2.56 shows that HH-I and HH-I orthogonality are equivalent but

did not determine Birkhoff-James orthogonality for finite elementary op-

erators.

Khalil and Alkhawaida [64] presented two new definition of orthogonality

types. One is related to proximity in Banach spaces and other related to

contractive projections. The relation between the two types was studied
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and basic properties of each type were presented. The reflection of such

orthogonalities to compact operators was discussed. The following are

their main results:

Theorem 2.57. [64, Theorem 3.2] Suppose Z is a Banach space. Then

j ⊥d h if j ⊥n h.

Theorem 2.57 shows that j is d-orthogonal to h if j ⊥n h but did not

establish orthogonality conditions for finite elementary operators.

Theorem 2.58. [64, Theorem 3.4] Let Z be a Banach space with factor-

ization. If the d-orthogonality is additive, then Z is a Hilbert space.

Theorem 2.58 presented additive property of d-orthogonality but did not

establish orthogonality conditions for finite elementary operators.

Hossein [47] extended the usual concept of orthogonality to Banach spaces.

Completely continuous operators were characterized on Banach spaces

that posses an orthonormal countable basis was also established. The

following are Hossein’s main results:

Theorem 2.59. [47, Theorem 2] Suppose (tk)k ∈ Z be a sequence in E,

the following are equivalent:

(i). The sequence (tk) ∈ Z is orthogonal in E.

(ii). For every pair of sequences (gk)k ∈ Z and (hk)k ∈ K satisfying

|gk| = |hk| for every k ∈ Z,
∑

k∈Z hkxk converges if
∑

k∈Z hkxk

converges and if both ∥
∑

k∈Z hkxk∥=∥
∑

k∈Z hkxk∥.
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Theorem 2.59 characterized completely continuous operators on Banach

spaces that admit orthonormal countable basis but the study was limited

to characterization of finite elementary operators.

Cuixia and Senlin [24] studied isosceles orthogonality is homogenous, and

that was the crucial orthogonality type in normed linear spaces, from

the given view point. To add, Cuixia and Senlin [24] studied the link

between homogeneity of isosceles orthogonality and other concepts such

as isometric reflection vectors and l2-summand vectors, It was proved that

a Banach space Z is a Hilbert space given that the interior of the class

of homogeneity of isosceles orthogonality in the unit sphere of Q is non-

empty. In addition, a geometric constant NHQ was introduced to show

that the isosceles orthogonality is not homogenous . It was shown that

0 ≤ NH ≤ 2 NHX = 0 given that Z is a Hilbert space and NHQ = 2

provided that Z is non-uniformly square.

Lemma 2.60. [24, Lemma 2] Suppose z ∈ HZ is a point of SZ that is

smooth then z is an isometric reflection vector, and hence z is Robert

orthogonal to a hyperplane.

Theorem 2.60 shows that z is Rorberts orthogonal if z is an isometric

reflection vector but did not determine Birkhoff-James orthogonality for

finite elementary operators.

Salah and Hacene [82 minimized the C∞-norm of affine maps from L(Z)

to C∞ by use of convex and differentiable analysis as was an studied in op-

erator theory. The transformations considered generally the elementary

operator especially the generalized derivations that were most important.
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As a consequence, global minima was characterized in terms of orthogo-

nality. The following are some of their main results:

Theorem 2.61. [82, Theorem 3.3] Suppose Q ∈ C∞, φ(Q) has the po-

lar decomposition φ(Q) = U |φ(Q)| and let j ∈ T . Then |Q + (SX −

XR)|C∞ ≥ ∥φ(Q)∥C∞; (j ⊗ Uj) ∈ KerR∗S for all X ∈ C∞.

Theorem 2.61 characterizes the orthogonality of operators Q in C∞ but

did not determine Birkhoff-James orthogonality for finite elementary op-

erators.

Corollary 2.62. [82, Corollary 3.2] Suppose Q ∈ C∞
∩
KerδS,R, φ(Q)

has the decomposition φ(S) = U |φ(Q)′| and let j ∈ Γ. Then the following

assertions are equivalent.

(i). |Q+ (SX −XR)|C∞ ≥ ∥φ(Q)∥C∞ for all X ∈ C∞,

(ii). (j ⊗ Uj) ∈ KerR∗S∗.

Corollary 2.62 characterizes the orthogonality of operators Q in C∞ but

did not determine Birkhoff-James orthogonality for finite elementary op-

erators.

Theorem 2.63. [82, Theorem 3.4] Suppose Q,P ∈ C∞ and a ∈ T ,

where Q = H|Q| is a point in C∞. The following properties are saidto be

equivalent.

(i). Fψ on C∞ has a global at Q.

(ii). max j ∈ λ, ∥j∥ = 1 Re⟨ϕ(P ), j, Uj⟩ ≥ 0.
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(iii). for every P ∈ C∞ tr((j ⊗′ Uj)ϕ(P )) = 0 .

(iv). ϕ(P )j⊥Qj.

Theorem 2.63 characterizes orthogonality in terms of Birkhoff but did not

determine Birkhoff-James orthogonality for finite elementary operators.

Later Ionica [50] presented some relationships between Birkhoff orthog-

onality and some concepts in convex analysis. Through this Ionica [50]

obtained Blanco and Turnsek’s results regarding linear mappings which

has Birkhoff orthogonality. The following are his main results:

Theorem 2.64. [50, Theorem 1] If P : X1 → Y2 is a linear transforma-

tion, then the properties follow are the same:

(i). P has the orthogonality.

(ii). suppose ń1+⟨q, r⟩ = 0, q, r ∈ X1, then ń2+⟨Pq, Pr⟩ ≥ 0.

(iii). Fq,r is not reducing on R.

(iv). Fq,r is constant on R.

(v). There is g > 0 such that ∥Pq∥2 = g∥q∥1, for q ∈ X1.

Theorem 2.64 establishes properties that characterize the linear opera-

tors which preserve orthogonality but did not characterize finiteness of

operators.

Corollary 2.65. [50, Corollary 1] Orthogonalities on the similar normed

space W are equal given that the corresponding norms are proportional.
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Corollary 2.65 establishes a simple property which characterizes the linear

operators preserving orthogonality but did not characterize finiteness of

elementary operators.

Theorem 2.66. [ 50,Theorem 1] The statements that follow are equiva-

lent:

(i). A linear operator Q : X1 → Y2, where X1, Y2 are two normed spaces,

is orthogonal given that Qis an isometric.

(ii). A linear operator Q : X1 → Y2, where X is a normed space, is

orthogonal given that Q an isometry multiplied by a constant that i

positive.

(iii). Given orthogonality types on the similar normed space X, charac-

terized by two norms on X, are equal provided the two norms are

proportional.

Theorem 2.66 establishes properties that characterize the orthogonality

of linear operators but did not characterize finiteness of elementary oper-

ators.

Ali Zamani and Mohammad [9] investigated properties of approximate

Roberts orthogonality and how they are related to approximate Birkhoff

orthogonality. Also they studied the set of linear mappings that are ap-

proximate Roberts orthogonal of type ε ⊥ R. It was shown that an

ε-isometric scalar multiple preserves approximate Roberts orthogonality.

The following are some of their main results:

Proposition 2.67. [9, Proposition 2.1] Suppose ε ∈ [0, 1). Then ⊥ε
R and

ε ⊥R are symmetric i.e
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(i). j ⊥ε
R k ⇒ k ⊥ε

R j, ∀j, k ∈ Z

(ii). jε ⊥R k ⇒ kε ⊥R j, ∀k, j ∈ Z

Proposition 2.67 shows that approximate Roberts orthogonality is sym-

metric but did not determine Birkhoff-orthogonality for finite elementary

operators.

Proposition 2.68. [9, Proposition 2.2] Let ε ∈ [0, 1). Then ⊥ε
R and ε ⊥R

are homogeneous i.e

(i). j ⊥ε
R k ⇒ αj ⊥ε

R βk, ∀j, k ∈ Z

(ii). jε ⊥R k ⇒ αjε ⊥R βk, ∀j, k ∈ Z

Proposition 2.68 shows that approximate Roberts orthogonality is ho-

mogenous but did not determine Birkhoff-orthogonality for finite elemen-

tary operators.

Proposition 2.69. [9, Proposition 2.3] If Z is a normed space that is

and q, r ∈ Z then q ⊥ε
R r ⇒ qε ⊥R r for any ε ∈ [0, 1).

Proposition 2.69 shows that approximate Roberts orthogonality is sym-

metric but did not determine Birkhoff-orthogonality for finite elementary

operators.

Justyna [54] showed how different concepts of orthogonality have been dis-

cussed in functional equations. Orthogonality relations were introduced

and functional equations examples were given intended for only orthogo-

nal vectors. Some of solutions of functional equations together with some
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applications were shown. Then the problem of stability taking into ac-

count different aspects of the problem was discussed. Also Justyna [54]

mentioned the orthogonality equation and the problem preserving orthog-

onality. Moreover, after proofing results, some open problems regarding

those topics were stated but did not determine Birkhoff-orthogonality for

finite elementary operators.

Pawel [74] introduced an approximate orthogonality relation and consid-

ered groups of linear mappings with approximate orthogonality. Pawel

[74] showed that especially the property that a transformation that pre-

serve B-orthogonality is equal to the orthogonality that preserves the

p, p+-orthogonality, although the mentioned orthogonalities do not neces-

sarily need to be equivalent. In addition, it was shown that every linear

mapping with approximate orthogonality is mainly a isometric scalar mul-

tiple. It was shown that a linear map with Birkhoff-James orthogonality

is an isometric scalar multiple. Pawel [74] gave some characterizations

of linear mappings with approximate orthogonality in real normed spaces

but in this study we have determined Birkhoff-orthogonality for finite

elementary operators.

Later in [75] Pawel extended this study and showed that the semi-orthogonality

type and p+-orthogonality of approximate are generally not comparable

unless and otherwise in a smooth normed space. Consequently, smooth

spaces were determined in relation to approximate orthogonality was

given but did not determine Birkhoff-orthogonality for finite elementary

operators.

In [10] Ali Zamani and Mohammad introduced the notion of the set of ap-
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proximate Roberts orthogonality and investigated the conditions of those

sets geometrically. However, Ali Zamani and Mohammad [10] introduced

a-isosceles orthogonality concept that is approximate and considered a

group of mappings, that are approximately a-isosceles orthogonal but did

not determine Birkhoff-orthogonality for finite elementary operators.

Chaoqun and Fangyan [25] investigated maps that are norm derivative

orthogonal between normed spaces. Those maps were shown to be a scalar

multiple of an isometry but did not determine Birkhoff-orthogonality for

finite elementary operators.

Bhuwan [20] studied two new types of orthogonality from generalized

Carlsson orthogonality and some properties of orthogonality in Banach

spaces were verified as Best implied Birkhoff and Birkhoff type of orthog-

onality implied Best approximation. It was also shown that Pythagorean

implies Best approximation. The following are some of Bhuwan’s main

results:

Theorem 2.70. [20, Theorem 2.2] If Z is a a real normed space and G

is a subspace of Z. Then, y0 ∈ PG(X) given that (x− y0) ⊥ BG.

Theorem 2.70 shows that Birkhoff orthogonality, Pythagorean orthogo-

nality and Isosceles orthogonality, implies best approximation but did not

determine Birkhoff-orthogonality for finite elementary operators.

Lemma 2.71. [20, Theorem 2.3] Suppose Z is a normed space, if for

x ∈ Z there exist y0 ∈ G and that x− y0 ∈ P (G) then y0 ∈ PG(x).

Lemma 2.71 shows that Rorbert orthogonality, Pythagorean orthogonal-

ity and Isosceles orthogonality implies best approximation but did not
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determine Birkhoff-orthogonality for finite elementary operators.

In [33] Debmalya, Kallol and Arpita studied the concepts Birkhoff-James

orthogonality that is approximate in a vector space in which a norm is

defined, geometrically, they were characterized in form of normal cones.

Interconnection betweeen normal cones and approximate Birkhoff-James

orthogonality to characterize normal cones completely in a Banach space

of dimension two was explored. Theorem for uniqueness of approximate

Birkhoff-James orthogonality set in a vector space in which a norm is de-

fined was also obtained. Their main aim was to study two different types

of approximate Birkhoff-James orthogonality, to be able to understand

the geometry of normed spaces. Among other things Debmalya, Kallol

and Arpita [33] exhibited that the two aspects of approximate Birkhoff-

James orthogonality have a close connection with normal cones in a in a

vector space in which a norm is defined but did not determine Birkhoff-

orthogonality for finite elementary operators.

Thomas [91] combined functional analytic and geometric view points

on approximate Birkhoff orthogonality in generalized minkowskis spaces

which are finite dimensional vector spaces equipped with a gauge. That

was the first approach in those spaces but in our study we determined

Birkhoff-orthogonality for finite elementary operators.

Ghosh, Debmalya and Kallol [44] explored the strict convexity of a vector

space Z in which a norm is defined and orthogonality of operators through

Birkhoff-James in K(Z), the space of all completely continuous operators

on Z. It was proved that a reflexive Banach space Z is said to be convex

if given Q,R ∈ K(Z), Q ⊥B R ⇒ Q ⊥SB R or Rz = 0 for some z ∈ Sz
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with ∥Qz∥ = ∥Q∥. It was shown that if Z is a Hilbert space of infinite

dimension then for all Q ∈ L(Z) R ⊥B Q⇒ Q ⊥B R given that Q is the

operator of zero. It was also shown that R ⊥B Q ⇒ Q ⊥B R for a real

Hilbert space Z, Q ⊥B R ⇒ R ⊥B Q for R ∈ L(Z) provided Q is the

zero operator. The following are some of their main results:

Theorem 2.72. [44, Theorem 2.1] Suppose X is a Banach space that is

strictly convex and reflexive. Then for Q,R ∈ K(X), Q ⊥B R ⇒ Q ⊥SB

R or Rz = 0 for some z ∈MQ.

Theorem 2.72 shows that a Banach space X is reflexive and convex if for

any Q,R ∈ K(Z), Q ⊥B R ⇒ Q ⊥SB R but in our study we determined

Birkhoff-orthogonality for finite elementary operators.

Theorem 2.73. [44, Theorem 2.2] If Z is a a Banach space that is strictly

convex and R ∈ K(Z) is an injective. Then given Q ∈ K(Z), Q ⊥B R ⇒

Q ⊥SB R.

Theorem 2.73 shows for Q,R ∈ K(Z), Q ⊥B R ⇒ Q ⊥SB R but did not

determine Birkhoff-orthogonality for finite elementary operators.

Theorem 2.74. [44, Theorem 2.4] Suppose Z is a real normed linear

space and if Q,R ∈ K(Z), Q ⊥B R ⇒ Q ⊥SB R or Rz = 0 for some

z ∈MQ. Then Z is strictly convex.

Theorem 2.74 shows that a real normed linear space Z is strictly convex

provided for Q,R ∈ K(Z), Q ⊥B R ⇒ Q ⊥SB R but did not determine

Birkhoff-orthogonality for finite elementary operators.
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Theorem 2.75. [44, Theorem 2.5] Suppose Z is a real reflexive Banach

space. Then Z is strictly convex given that for any Q,R ∈ K(Z), Q ⊥B

R ⇒ Q ⊥SB R or Rz = 0 for some z ∈MQ.

Theorem 2.75 shows that a real reflexive Banach space Z is strictly convex

given Q,R ∈ K(Z), Q ⊥B R ⇒ Q ⊥SB R but did not determine Birkhoff-

orthogonality for finite elementary operators.

Corollary 2.76. [44, Corollary 2.6] If Z is a real finite dimensional

normed space. Then Z is strictly convex if for Q,R ∈ K(Z), Q ⊥B R ⇒

Q ⊥SB R or Rz = 0 for some z ∈MZ.

Corollary 2.76 shows that a normed space Z of finite dimension satisfies

the strictric convexity property given that Q,R ∈ K(Z), Q ⊥B R ⇒

Q ⊥SB R but did not determine Birkhoff-orthogonality for finite elemen-

tary operators.

Debmalya [30] characterized Birkhoff-James orthogonality of linear tans-

formations on a real Banach space of finite dimension. Debmalya [30]

then explored the symmetric pproperties of Birkhoff-James orthogonality

of operators that are bounded defined on Z. It was proved that Q ∈ L(l2p)

(p ≥ 2, p ̸= ∞) has left symmetry in relation to Birkhoff-James orthogo-

nality given that Q is the zero operator. Debmalya [30] concluded that the

result holds for any real Banach space of finite dimension that is strictly

convex lnp (p > 2, p ̸= ∞). The following are some of Debmalya’s main

results:

Theorem 2.77. [30, Theorem 2.2] Let Z is a real Banach space of finite

dimension. If Q,R ∈ L(Z), then Q ⊥B Z if there is z, w ∈MQ such that

Rz ∈ Q+
z and Rw ∈ Q−

z .
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Theorem 2.77 shows how Birkhoff-James orthogonality have been charac-

terized for linear operators but did not determine Birkhoff-orthogonality

for finite elementary operators.

Corollary 2.78. [30, Corollary 2.2.1] Suppose Z a real Banach space

of finite dimension. If Q ∈ L(Z) is such that Q attains norm only at

P , where P is a subset of Sz that is connected and not open. Then for

R ∈ L(Z) with Q ⊥B R, there is x ∈ P where Qz ⊥ Rz.

Corollary 2.78 shows that Qz ⊥ Rz on a real Banach space of finite dimen-

sion but did not determine Birkhoff-orthogonality for finite elementary

operators.

Jacek [51] considered a linear operator Q : Z → Z on a normed space Z

reversing orthogonality. That is, having the condition j ⊥ k ⇒ Qk ⊥ Qj

∀j, k ∈ Z where ⊥ stands for Birkhoff orthogonality. The following are

some of Jacek’s main results:

Theorem 2.79. [51, Theorem 3.1] Suppose Z a Minkowski plane that

satisfies either: (i) smoothness and not strict convexity or: (ii) strict con-

vexity but not smoothness. Then there are no nontrivial linear operators

with reverse orthogonality.

Theorem 2.79 shows that in a Minkowski plane there are linear trans-

formations that are not trivial with reverse orthogonality but did not

determine Birkhoff-orthogonality for finite elementary operators.

Corollary 2.80. [51, Corollary 3.2] If Z a Minkowski plane with a linear

operator that is not zero with reverse orthogonality. Then Z is either

smooth and has strict convexity or none holds.
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Corollary 2.80 shows the smoothness and strict convexity of Z given that

Z is a Minkowski plane then Z is strictly convex but did not determine

Birkhoff-orthogonality for finite elementary operators.

Kallol and Debmalya [60] studied Birkhoff-James orthogonality of opera-

tors Q, P on (Rn, ∥.∥∞) and found a property for Q to be orthogonal to

P in terms of Birkhoff-James with some properties on Q. In [60], a prop-

erty for the existence of two operators Q, P on (Rn, ∥.∥∞) with Q ⊥B P

such that x ̸∈ Rn with ∥z∥∞ = 1, Qz ⊥B Pz and ∥Qz∥∞ = ∥Q∥∞ was

found. Kallol and Debmalya [60] found required condition on Q so that if

Qz ⊥B Pz then there exist z ∈ Rn with ∥z∥∞ = 1 such that Qz ⊥B Pz and

∥Qx∥∞ = ∥Q∥∞. The relationship between the orthogonality of vectors

in (Rn, ∥.∥∞) and the orthogonality of operators on (Rn, ∥.∥∞) was also

obtained. The following are some of Kallol and Debmalya’s main results:

Theorem 2.81. [60, Theorem 2.1] Let Q = (aij)n×n and P = (bij)n×n

are two linear operators on (Rn, ∥.∥∞) and there exist io ∈ {1, 2, ...n}

such that aioj ̸= 0 for every j ∈ {1, 2, ...n} and |aio1|+ |aio2|+ ...+ |aion| >

|ai1|+ |ai2|+ ...+ |ain| for every i ∈ {1, 2, ...n} - io. Then

∥Q∥∞ ≤ ∥Q+ λP∥∞ for all λ ∈ R iff

(sgnaio1)bio1 + ...+ (sgnaion)bion = 0 where

(sgnaij) = +1 if > 0

= −1 if < 0

= 0 if = 0.
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Theorem 2.81 gives a condition needed for the operators Q and P on

(Rn, ∥.∥∞) to be orthogonal in terms of Birkhoff-James but the study was

limited to establishment of orthogonality conditions for finite elementary

operators.

In [42] Ghosh, Kallol and Debmalya studied the orthogonality of Birkhoff-

James for linear operators on (Rn, ∥.∥1). It was proved that Q ⊥B P ⇒

P ⊥B Q for all operators Q on (Rn, ∥.∥1) provided Q obtains a norm at

the point of extreme, image that has left symmetry for (Rn, ∥.∥1) and the

other extreme points have zero images. In [42] it was also proved that

R ⊥B Q ⇒ Q ⊥B R for all operators Q provided Q obtains norm at

all extreme points and images of extreme points are scalar multiples of

extreme points. The following are their main results:

Lemma 2.82. [42, Lemma 2.1] Multiples of scalar of a non-open unit

ball are the point of (Rn) that has right symmetry.

Lemma 2.82 shows that operators on (Rn, ∥.∥1) are symmetric in terms

of Birkhoff-James but did not characterize finiteness of elementary oper-

ators.

Theorem 2.83. [42, Theorem 2.2] Let T = (tij) be a linear operator

on Rn, then for any linear operator A on (Rn) A ⊥B T ⇒ T ⊥B A

provided T obtains norm at the points of extreme and images of the points

of extreme are multiples of scalars.

Theorem 2.83 establishes symmetric property for a linear operator in

terms of Birkhoff-James that is H ⊥B G⇒ G ⊥B H given that G obtains

norm at the points of extreme and images of the points of extreme are
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multiples of scalars (Rn) and images of the points of extreme are zero

but did not determine Birkhoff-James orthogonality for finite elementary

operators.

Theorem 2.84. [42, Theorem 2.3] Let F = (fij) be a linear operator on

Rn, then for a linear operator J on (Rn) J ⊥B F ⇒ F ⊥B J given

that F obtains norm at only one extreme point and image of which is left

symmetric point of (Rn) and images of other extreme points are zero.

Theorem 2.84 establishes symmetric property for linear operators in terms

of Birkhoff-James that is J ⊥B F ⇒ F ⊥B J given that F obtains norm

at all extreme points and image of that is left symmetric point of (Rn) and

images of other extreme points are zero but did not determine Birkhoff-

James orthogonality for finite elementary operators.

In [43] Ghosh, Debmalya and Kallol Studied orthogonality of linear oper-

ators in terms of Birkhoff-James defined on (Rn, ∥.∥∞) and characterized

the right and left symmetric operators on (Rn, ∥.∥∞). The following are

their main results:

Theorem 2.85. [43, Theorem 2.1] Suppose T = (tij) is a nonzero opera-

tor on Rn. For any linear operator A on (Rn) A ⊥B T ⇒ T ⊥B A given

that for each i ∈ 1, 2, ...n, exactly one term ti2, ti2, ..., tin is nonzero and

of the same magnitude.

Theorem 2.85 shows the study of operators on (Rn) in terms of Birkhoff-

James, the theorem characterizes nonzero right symmetric linear operator

on (Rn) but did not give orthogonality conditions for finite elementary

operators.
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Theorem 2.86. [43, Theorem 2.3] Let Q be a linear operator on R2,

then for the linear operator P on (R2) Q ⊥B P ⇒ P ⊥B Q provided Q

obtains norm at the point of extreme , say ei, Qei is a left symmetry point

and the image of other extreme point is zero.

Theorem 2.86 shows the study of operators on (Rn) in terms of Birkhoff-

James, the theorem characterizes nonzero left symmetric linear operator

on (R2) but did not give orthogonality conditions for finite elementary

operators.

Theorem 2.87. [43, Theorem 2.5] Suppose Q is a linear operator on

Rn, n ≥ 3. Then is a left symmetric given that Q is the zero operator.

Theorem 2.87 establishes condition for an operator Q to be symmetric but

did not establish orthogonality conditions for finite elementary operators.

In [57] Kallol, Debmalya and Arpita characterized the notion of approx-

imate Birkhoff-James orthogonality in the group of operators that are

bounded given on a vector space in which a norm is defined. Kallol,

Debmalya and Arpita [57] characterized Birkhoff- James orthogonality in

the algebra of transformations that are bounded given on Hilbert space

was attained that led to the recent result by Chiemlink where Birkhoff-

James orthogonality of transformations that are linear was characterized

on Hilbert space of finite dimension and also operators that are bounded

on Hilbert space of finite dimension and also completely continuous op-

erators on any Hilbert space. The following their main results:

Theorem 2.88. [57, Theorem 2.1] Suppose Z be a Banach space that

is reflexive and W is a normed space. If Q,R ∈ B(Z,W ). Then for

0 ≤ t < 1, T ⊥ε
B A if (i) or (ii) holds.
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(i). There exists z ∈ MQ such that Rz ∈ (Qz)
+ and for every λ ∈

(−1−
√
1− ϵ2−1+

√
1− ϵ2)∥Q∥

∥R∥ there is zλ ∈ SZ and that ∥Qzλ+

λRzλ∥ ≥ 1−
√
1− ϵ2∥Q∥.

(ii). There exists w ∈MQ such that Rw ∈ (Qw)
− and for every λ ∈

(−1−
√
1− ϵ2−1+

√
1− ϵ2)∥Q∥

∥R∥ there is wλ ∈ SZ and that ∥Qwλ+

λRwλ∥ ≥ 1−
√
1− ϵ2∥Q∥.

Theorem 2.88 characterizes approximate Birkhoff-James orthogonality on

a reflexive Banach space but did not determine Birkhoff-James orthogo-

nality for finite operators.

Theorem 2.89. [57, 2.2] Suppose Z is a Banach space of finite dimen-

sion. If Q ∈ B(Z). Then R ⊥B Q if there exists w, z ∈ MR such that

Rw ∈ (Qw)
+ and Rz ∈ (Qw)

−.

Theorem 2.89 characterizes Birkhoff-James orthogonality of bounded lin-

ear operator in the norm attainment set but did not determine Birkhoff-

James orthogonality for finite operators.

In [31] Debmalya, Kallol and Arpita studied Birkoff-James orthogonality

on a vector space in that a norm is endowed that is not finite dimen-

sional linear transformations that are bounded and characterization of

Birkhoff James orthogonality of bounded linear transformations was also

done. As a consequence, from the study, the authors [31] gave a deter-

mined Birkhoff-James orthogonality of bounded linear functionals on a

real vector space in which a norm is defined given that the dual space is

strictly convex. In [31] a necessary and required properties for smooth-

ness of bounded linear transformations on a normed linear space of infinite
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dimension was provided. The following are some of their main results:

Theorem 2.90. [31, Theorem 2.1] Suppose that Z is a reflexive Ba-

nach space and W be a normed linear space. Then for every Q,R ∈

K(Z,W ) Q ⊥B R given that x, y ∈ MQ such that Rx ∈

(Qx)
+ and Ry ∈ (Qy)

−.

Theorem 2.90 gives the orthogonality Birkhoff-James for completely con-

tinuous operators on a Banach space but did not determine Birkhoff-

James orthogonality for finite operators in normed spaces.

In [62] Kallol, Debmalya, Arpita and Kallidas studied Birkhoff-James or-

thogonality of linear transformations on complex complete vector space

in which a norm is defined and obtained a complete characterization of

the same. As a way of obtaining other definitions, it was illustrated that

there is a possibility to determine orthogonality of completely continu-

ous linear operators that are complex analogous to the real form. Hence,

the theoretic property of Birkhoff-James orthogonality in the real vector

space for operators in which a norm is defined could be given in form of

corollaries to their resent study. As a fact, compact operators were char-

acterized in the complex space in terms of Birkhoff-James orthogonality

in order to differentiate the complex form from the real form. The left

symmetric operators on complex two-dimensional lp space given that T is

the zero operator was also studied. The following are some of their main

results:

Theorem 2.91. [62, Theorem 2.4] Suppose Z is a Banach space with

reflexivity and W is any normed linear space. Then for every Q,R ∈

K(W,Z). Then Q ⊥B R if and only if for each α ∈
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U there is x ∈ x(α) , y ∈ y(α) ∈MQ such that Rx ∈ (Qx)
+α and Ry ∈

(Qy)
−α.

Theorem 2.91 shows how Birkhoff-James orthogonality of linear trans-

formations is characterized on complex complete vector space in which a

norm is defined but did not determine Birkhoff-James orthogonality for

finite elementary operators.

Corollary 2.92. [62, Corollary 2.10] Suppose Z is a strictly convex and

smooth complex Banach space of finite dimension. If Q ∈ L(Z) be such

that their exists w, z ∈ Sw satisfying

(i). w ∈MQ

(ii). z ⊥B w

(iii). Qz ̸= 0. Then Q can not have symmetry.

Corollary 2.92 gives characterizes Birkhoff-James orthogonality of bounded

linear transformations but did not determine Birkhoff-James orthogonal-

ity for finite elementary operators.

In [77] Sanati and Kardel described the algebra of operator that preserve

orthogonality defined on a compete vector space Z of infinite dimension

with an inner product as being a multiple scalar of operators that are

unitary between Hilbert space Z and some subspaces of Hilbert space Z

that are closed. It was shown that any circle (centred at the origin) is the

spectrum of an orthogonality that preserves operator. The following are

some of their main results:
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Lemma 2.93. [77, Lemma 2.1] Suppose Z is a Hilbert space and Q ∈

L(Z). If Q preserves orthogonality, then so are Q∗Q and ∥Q∥.

Lemma 2.93 characterized the class of orthogonality preserving operators

but did not determine Birkhoff-James orthogonality for finite elementary

operators.

Corollary 2.94. [77, Corollary 2.4] Let Q ∈ OP (H) then ∥Qx∥ =

r(Q)∥x∥ ∀x ∈ H.

Corollary 2.94 shows that the operator Q is orthogonality preserving then

the norm of Qx is equivalent to the product of the spectral radius of Q

and the norm of x but did not determine Birkhoff-James orthogonality

for finite elementary operators.

Debmalya, Kallol, and Arpita [32] studied Birkhoff-James orthogonal-

ity of completely continuous operators between Hilbert spaces and Banach

spaces. Using the concept of inner products that are semi in normed linear

spaces and concepts that are linked geometrically, some of the recent re-

sults were generalized and improved. In particular, Euclidean spaces were

characterized and it was proved that the norm of a completely continuous

operator can be possibly obtained through of Birkhoff-James orthogonal-

ity set. Then best approximation type results were also presented in the

space of bounded linear operators. The following are some of their main

results:

Corollary 2.95. [32, Corollary 2.2.1] Suppose Z is a Hilbert space of

infinite dimension. If Q,P ∈ K(Z,Z). Then Q ⊥B P provided that

x ∈MQ such that Qx ⊥ Px.
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Corollary 2.95 shows orthogonality of operators on a Hilbert space through

Birkhoff-James orthogonality but did not determine Birkhoff-James or-

thogonality for finite elementary operators.

In [68] Kallol presented results on Birkhoff-James orthogonality and smooth-

ness in a vector space defined by a norm. Kallol [68] explored the orthog-

onality relation between elements in a complete vector space W in which

a norm is defined and the space of linear mappings L(W ). Smoothness

of the space of bounded linear operators was also studied. Kallol [68]

obtained the following results:

Theorem 2.96. [68, Theorem 2.2.1] Suppose Q ∈ L(W,Z) and MQ =

DU(−D) where D is not an empty connected subset of Sw. Then for any

R ∈ L(W,Z) Q ⊥B R if there exists w ∈MQ such that Qw ⊥ Rw.

Corollary 2.96 shows orthogonality relation between elements in a com-

plete vector space W in which a norm is defined and the space of linear

mappings B(W ) but did not establish orthogonality conditions for finite

elementary operators.

In [21] Bhuwan and Prakash characterized orthogonality in a vector space

in which a norm is defined in the best approximation. Therefore, it

was discovered that Birkhoff-james orthogonality means best approxima-

tion and best approximation means Birkhoff-james orthogonality. Also

it was shown that for ε-orthogonality, ε-best approximation means ε-

orthogonality. In [21] Bhuwan and Prakash established the relation be-

tween pythagorean orthogonality and best approximation and also isosce-

les orthogonality and ε-best approximation in normed spaces but did not

determine Birkhoff-orthogonality for finite elementary operators.
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In [11] Ali Zamani considered a semi-inner product and generalized the no-

tion of Birkhoff-James orthogonality of operators a vector space in which

a complete inner product is defined. Moreover, the relation Q ⊥B
A R was

introduced given that Q and R are operators that are bounded and lin-

ear linked to the norm endowed with an operator G that is non-negative

and that satisfy, ∥Q + γR∥G ≥ ∥Q∥G for all γ ∈ C. Zamani [11] ex-

tended the study due to Bhatia and Semrl, and proved that Q ⊥B
G R

provided that there exist a sequence of G-unit vectors {xn} in H such

that limn→∞ ∥Qxn∥G = ∥Q∥G and lim⟨Qxn, Rxn⟩G = 0. Then, formulas

for the operator distance G to the set of multiple scalars in Semi-Hilbert

spaces were provided. The following are Zamani’s main results.

Theorem 2.97. [11, Theorem 2.4] Suppose Z is a finite dimensional

Hilbert space and let Q,R ∈ L(Z) then the properties below are equivalent

(i). There exists z ∈MQ such that Qz ⊥A Rz

(ii). Q ⊥B
A R

Theorem 2.97 shows that Qz is orthogonal to Rz is equivalent to Q is

orthogonal to R but the study was limited to characterization of finite

elementary operators.

In [12] Arpita and Kallol studied orthogonality defined on arbitrary Ba-

nach spaces. Arbitrary Banach spaces were characterized and similar ones

were obtained under other added properties. For a Hilbert space Z that is

arbitrary, Arpita and Kallol [12] also studied orthogonality to a subspace

of the set of linear operators L(Z) and linked it to operator norm and the

numerical radius norm. Birkhoff-James orthogonality was characterized
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for bounded linear operators on Banach spaces that are arbitrary to a

subspace of the space of an operator. Their main goal was to investigate

Birkhoff-James orthogonality for Q ∈ L(Z,W ) to the subspace L(Z,W )

for Banach spaces Z and W that are arbitrary. Arpita and Kallol [12]

first characterized Q ⊥ R whenever Q ∈ L(Z,W ) and R is a subspace

of finite dimension of L(Z,W ) where W is a reflexive Banach space and

Z is a Banach space of finite dimension. If W and Z were arbitrary

Banach spaces and R an arbitrary subspace of L(Z,W ), then Q ⊥B W

under appropriate conditions. Arpita and Kallol [12] also characterized

Birkhoff-James orthogonality of Q ∈ L(Z,W ) to a subspace of L(Z) for

a Hilbert space Z of infinite dimension . Later, it was discovered that

the norm attainment set is more important determining Birkhoff-James

orthogonality of operators. The following are some of their main results:

Theorem 2.98. [12, Theorem 2.8] Let Z be a Hilbert space and Q ∈

L(Z) such that ∥Q∥ = 1, MQ = SZ0 where Z0 is a subspace Z of fi-

nite dimension and ∥Q∥Z⊥
0
< ∥Q∥. Then for the subspace R of L(Z),

Q ⊥B R if z1, z2, ...zn ∈ MQ and γ1, γ2, ...γn > 0 such that
∑n

i=1 = 1 and∑n
i=1 γi⟨Azi, Bzi⟩ = 0 for all A ∈ W .

Theorem 2.98 gives a complex characterization of orthogonality for ar-

bitrary Banach spaces but the study was limited to characterization of

finite elementary operators.

In [88] Bottazi, Conde and Debmalya studied bounded linear opera-

tors through Birkhoff-James orthogonality and isosceles orthogonality

on Hilbert spaces and Banach spaces. Birkhoff-James orthogonality of

bounded linear operators was introduced and some of the possible appli-
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cation were determined to this regard. Isosceles orthogonality of bounded

positive linear operators defined on a Hilbert space and some of the re-

lated properties that those with disjoint support were studied. Birkhoff

orthogonality was related to isosceles orthogonality in a general Banach

space, Birkhoff orthogonality and isosceles orthogonality and norm at-

tainment set and disjoint support. The following are some of their main

results:

Proposition 2.99. [88, Proposition 3.2] Suppose Z and W are two Ba-

nach spaces, either both real or complex. Let Q,R ∈ L(Z,W ). If OQR =

SZ the Q ⊥B R.

Proposition 2.99 shows how bounded linear operators are characterized

through the orthogonality of Birkhoff but did not determine Birkhoff-

James orthogonality for finite elementary operators.

Theorem 2.100. [88, Theorem 3.3] Suppose Z is a reflexive real Banach

space and W is a real Banach space and Q,R ∈ K(Z,W ). If Q ⊥B R

then OQR ̸= 0.

Theorem 2.100 shows how bounded linear operators are characterized in

terms of Birkhoff-James orthogonality but did not determine Birkhoff-

James orthogonality for finite elementary operators.

Theorem 2.101. [88, Theorem 3.4] A real or complex Hilbert space H is

finite-dimensional if for any Q,R ∈ K(Z,W ) we have Q ⊥B R ⇒ OQR ̸=

0.

Theorem 2.101 considered a complex Hilbert space and determined the

orthogonality of Birkhoff of operators that are linear and bounded but
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did not determine Birkhoff-James orthogonality for finite elementary op-

erators.

In [22] Bhuwan and Prakash enlisted some properties of Birkhoff-Orthogonality

and Carlsson orthogonality along with it, Bhuwan and Prakash [22] in-

troduced two new particular cases of Carlsson orthogonality and checked

some properties of orthogonality in relation to these particular cases in

normed spaces. Bhuwan and Prakash [22] showed how isosceles, Rorbert

and Pythagorean orthogonalities can be derived from the carlsson orthog-

onality and obtained two new orthogonality relations for the Carlsson.

In [73] Priyanka and Sushil considered the required properties for the

orthogonality of Birkhoff in Banach spaces. The relations between the

notion of Gateaux derivative and orthogonality for the sub-differential

set function of norm were given. Formulas for distances which can be ob-

tained by the characterizing Birkhoff-James orthogonality were obtained.

Finally, few new results were obtained. The following are some of their

results:

Theorem 2.102. [73, Theorem 1.1] If Q,R ∈ Mn(K). Then Q is or-

thogonal to R if there exist a unit vector r ∈ Cn and that ∥Qr∥ = ∥Q∥

and ⟨Qr, Rr⟩ = 0.

Theorem 2.102 provides orthogonality properties for Birkhoff-James or-

thogonality in Banach space but the study was limited to establishment

of orthogonality conditions for finite elementary operators.

Theorem 2.103. [73, Theorem 3.2] Let Z be a complex Hilbert space.

Let Q,R ∈ L(Z). Then Q is orthogonal to R if there exist a sequence of
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unit vectors hn ∈ H such that ∥Qhn∥ → ∥Q∥ and ⟨Qhn,Rhn⟩ → 0 as

n→ ∞.

Theorem 2.103 provides required orthogonality conditions for Birkhoff-

James orthogonality in complex Hilbert space but the study was limited to

establishment of orthogonality conditions for finite elementary operators.

2.4 Orthogonality of elementary operators

Concerning elementary operators and their orthogonality Anderson [5]

studied the range-kernel orthogonality for normal derivations. In his in-

vestigations Anderson [5] proved that if Q and R are operators in L(Z)

such that Q is normal and QS = SQ then for very Y ∈ L(Z), ∥δZ(Y ) +

R∥ ≥ ∥R| whereby ∥.∥ is the usual operator norm. It was shown that if

P is an isometry or a normal operator then the range of δT is orthogonal

to its nullspace. Also Anderson [5] showed that if P is normal with an

infinite number of points then the closed linear space of the range-kernel

orthogonality of δP is not all of L(Z). The following are Anderson’s main

results.

Theorem 2.104. [5, Theorem 3.2] Let S be an isometry in L(H). Then

R is orthogonal to N(δS).

Theorem 2.104 shows that the range of (δS) is orthogonal to the ker-

nel of (δS) but the study was limited to establishment of orthogonality

conditions for finite elementary operators.
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Theorem 2.105. [5] Let Q be normal in L(H) with spectral measure E(.).

Then ∀X ∈ L(H) and ∀R ∈ Q(δR), ∥R − δQ(X)∥ ≥ ∥R∥ i.e Ran(δR) is

orthogonal to Ker(δR).

Theorem 2.105 considered a normal operator in L(H) with spectral mea-

sure E(.) and showed that the range of (δR) is orthogonal to kernel of (δR)

but the study was limited to establishment of orthogonality conditions for

finite elementary.

Kittaneh [65] extended the study and showed that if Q and R are

operators in L(H) and that Q is normal R is an operator and R ∈ {Q}

then for every Y ∈ L(H), ∥δQ(Y )+R∥22 ≥ ∥ δQ(Y )∥22+∥R∥22 where ∥.∥2

is the Hilbert Schmidt operator norm. Therefore, in Hilbert space sense,

the range of δQ of Hilbert Schmidt operators is orthogonal to the kernel

of δQ.

In [66] Kittaneh used the p-norms of schatten for them being Gateaux

differentiatiable and the operator norm to determine the range kernel

orthogonality operators with respect to these norms. The following are

some of Kittaneh’s main results:

Theorem 2.106. [66, Theorem 1] Let A ∈ L(H) and G ∈ CP for some

p with 1 < w ≤ ∞. Then ∥δN(X) + G∥w ≥ ∥G∥w for every X ∈ L(H)

with δN ∈ CP if AG̃ = G̃A.

Theorem 2.106 shows that the range of a normal derivation is orthogo-

nal to its kernel but did not establish orthogonality conditions for finite

elementary operators.
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Theorem 2.107. [66, Theorem 1] Let A ∈ L(H) and S ∈ CP for some

p with 1 < p ≤ ∞. Then ∥δN(Z) + S∥p ≥ ∥S∥p for every Z ∈ L(H)

with δN(Z) ∈ CP if tr(S̃δN(Z)) = 0.

Theorem 2.107 shows that the range of δN(Z) is orthogonal to the kernel of

δN(Z) but did not establish orthogonality conditions for finite elementary

operators.

In [37] Duggal considered an elementary operator δqh where the operators

q, h, r are hyponormal, the operators q1, h2 are normal and q1 commutes

with h2. The following are Duggal’s main results:

Theorem 2.108. [37, Theorem 2.4] Let a, b ∈ L(Z) be commuting nor-

mal operators and ϕ : L(Z) → L(Z) be given by ϕ(X) = qrq∗ − hrh∗,

then ∥ϕ(r) + s∥ϕ ≥ ∥s∥ϕ for all s ∈ ϕ−1(0) ∩ ϕ and all r ∈ L(Z).

Theorem 2.108 gives the range-kernel orthogonaliy of an elementary but

did not establish orthogonality conditions for finite elementary operators.

In [89] Turnsek studied the elementary operator φ;L(H) → L(H) defined

by φ(Z) =
∑k

i=1AiZBi and φ∗(Z) =
∑k

i=1A
∗
iZB

∗
i . Tursek [89] proved

that

(i). When φ ≤ 1, then ∥φ(Z)−Z +G∥ ≥ ∥G∥ for all Z ∈ L(H) and

G ∈ Kerφ.

(ii). When
∑k

i=1AiAi
∗ ≤ 1,

∑k
i=1Ai

∗Ai ≤ 1,
∑k

i=1BiBi
∗ ≤ 1 and∑k

i=1B
∗
iBi ≤ 1 then for G ∈ Kerφ ∩ Kerφ∗ ∩ lp, (1 ≤ p ≤

∞) ∥φZ − Z + G∥p ≥ ∥G∥p and ∥φ∗Z − Z + G∥p ≥ ∥G∥p for

every Z ∈ L(H)
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(iii). (Mi)
k
i=1 and (Ni)

k
i=1 be sequences of normal operators that commute

and let δ(Z) =
∑k

i=1MiZNi. If δ(Z) ∈ l2 and G ∈ kerδ ∩ l2, then

∥δ(Z) +G∥22 = ∥δ(Z)∥22 + ∥G∥22

The following are some of his main results:

Theorem 2.109. [89, Theorem 1.1] Let G be a normed algebra such that

∥qr∥ ≤ ∥q∥∥r∥ for all q, r ∈ G and let ϕ : G → G be a linear map with

ϕ ≤ 1. If ϕ(S) = S for every S ∈ G, then ∥ϕ(Z) − Z + S∥ ≥ ∥S∥ for

all Z ∈ G.

Theorem 2.109 considered a normed algebra and showed that ϕ− 1 pre-

serves orthogonality if ϕ ≤ 1 but did not determine Birkhoff-James or-

thogonality for finite operators.

Proposition 2.110. [89, Proposition 1.2] Suppose that ϕ(S) = S for

some S ∈ L(H). If ϕ ≤ 1, then ∥ϕ(Z)− Z + S∥ ≥ ∥S∥.

Proposition 2.110 shows that for an elementary operator ϕ;L(H) → L(H)

preserves orthogonality if ϕ ≤ 1 but did not determine Birkhoff-James

orthogonality for finite operators.

Dragoljub [27] gave the range-kernel orthogonality results of the ele-

mentary operator linked to the invariant norms that are unitarily re-

lated with the norm ideals of operators. The set involved the mapping

Q : L(Z) → L(Z), Q(X) : RXG + KXV where L(Z) is the group of

all bounded operators and R, G, K, V are normal operators such that

RK = KR, GV = V G and KerR ∩ KerK = KerG ∩ KerV = {0}.

Dragoljub [27] established this set in the sense that the widest set that
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the orthogonality result is valid. Dragoljub [27] obtained the following

results:

Theorem 2.111. [27, Theorem 1] Suppose Q,R ∈ L(H) are normal

operators such that QR = RQ and ϕ(X) = QXR − RXQ. Furthermore

suppose that Q∗Q+R∗R > 0 if S ∈ Kerϕ then |∥ϕ(X)+K∥| ≥ |∥K∥|.

Theorem 2.111 presents the result of orthogonality of elementary oper-

ators to an arbitrary unitary invariant norms but did not characterize

finiteness of elementary operators.

Bachir and Hashem [17] presented a new set of finite operators which

include the set of dominant operators and gave an extension of the or-

thogonality results to certain finite operators. In [17] some commutativity

results were generalized. Their main goal was to investigate the orthogo-

nality of RanδQ,G and KerδQ,G for certain finite operators. It was proved

that R(δQ,G) is orthogonal to KerδQ,G when Q is dominant and G∗ is

M-hyponormal. The following are the main results obtained:

Proposition 2.112. [17, Proposition 3.1] Let Q be dominant and G be a

normal operator such that QG = GQ, then for all λ ∈ δp(G), |λ| ≤

dis(N,R(δQ)).

Proposition 2.112 considered a dominant operator and showed that R(δQ)

is orthogonal to KerδQ for every λ ∈ δp(Q) but did not establish orthog-

onality conditions for this finite operator.

Proposition 2.113. [17, Proposition 3.3] Let Q be dominant then for

every normal operator G such that QG = GQ we have ∥G∥ ≤

dist(G,R(δQ)).
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Proposition 2.113 shows that R(δQ) is orthogonal to KerδQ when Q is

dominant for every normal operator G but did not characterize orthogo-

nality conditions for finite operators.

Theorem 2.114. [17, Theorem 3.4] Let Q be dominant and G⋆ is hy-

ponormal, then for every T ∈ Ker(δQ) we have ∥T∥ ≤ dist(T,R(δQ)).

Theorem 2.114 shows that R(δQ) is orthogonal to KerδQ when A is

dominant and G∗ is M-hyponormal but did not characterize orthogonality

conditions for these operators.

Duggal and Harste [38] studied orthogonality and properties for closre

of the range for some elementary operators obtained from hyponormal

operators or contractions on Hilbert spaces. The following are some of

their main results:

Theorem 2.115. [38, Theorem 1] Let Q,G ∈ L(H) are contractions then

∥Z +DQ,G(R)∥ ≥ ∥Z∥∥ −
√
8∥DQ,G(Z)∥∥R∥.

Theorem 2.115 shows range closure properties for some elementary oper-

ators derived from hyponormal operators and establishes their orthogo-

nality but did not establish orthogonality conditions for finite elementary

operators.

Okelo and Agure [72] presented different examples of orthogonality in

normed spaces and gave the range-kernel orthogonality results of elemen-

tary operators and the operators that implement them were then pro-

vided. The following are some of their results:

Theorem 2.116. [72, Theorem 3.10] Let Y be an ideal with reflexivity in

L(Z) such that H∗ is strictly convex and let G : Y → Y be the elementary
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operator defined by G(Z) = SZV +KZL where S, V, K, L ∈ L(Z) are

operators that are normal and that SK = KS, V L = LV , SS∗ ≤ KK∗,

V V ∗ ≤ LL∗. Then H = RanG⊕KerG.

Theorem 2.116 shows that the range of a Jordan elementary operator is

orthogonal to its kernel but the study was limited to characterization of

finiteness of elementary operators.

In [13] Bouali and Bouhafsi exhibited pair (Q,G) of operators and showed

that the range of δQ,G is orthogonal to the kernel of δQ,G for the usual

operator norm. In [13] range and kernel orthogonality for δQ,G in relation

to the set of unitary invariant norms were established. The following are

some of their main results.

Theorem 2.117. [ 13,Theorem 2.1] Suppose Q,G ∈ L(Z). If G is in-

vertible and ∥Q∥∥G−1∥ ≤ 1 then ∥δQ,G(Z) + R∥ ≥ ∥R∥ for all Z ∈

L(Z) and for all R ∈ (KerδQ,G).

Theorem 2.117 investigated the orthogonality of range δQ,G and kernel

δQ,G of operators Q,G ∈ L(Z) but did not establish orthogonality condi-

tions for these operators.

Theorem 2.118. [ 13,Theorem 2.2] Suppose Q,G ∈ L(Z). If either

(i). Q is an isometry and the operator G is a contraction or

(i). Q is a contraction and G is a co-isometric then ∥δQ,G(Z) + R∥ ≥

∥R∥ for all Z ∈ L(Z) and for all R ∈ (KerδQ,G).
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Theorem 2.118 investigated the orthogonality of range δQ,G and kernel

δQ,G of operators Q,G ∈ L(Z) on the condition that either Q is an isom-

etry and the operator G is contractive or Q is contractive and G is a

co-isometric but did not establish orthogonality conditions for these op-

erators.

Bachir and Nawal [16] studied and characterized the points C1(H), the

trace class operators that are orthogonal to the range of elementary op-

erators in non-smoothness case and gave a counter example.

Theorem 2.119. [ 16,Theorem 1] If Q is a non open linear subset of

r ̸∈ Q, then r ⊥ s⇔ @ϕ ∈ D(r):Q ⊂ kerϕ.

Theorem 2.119 characterized the points C1(H), the trace class opera-

tors that are orthogonal to the range of elementary operators in non-

smoothness case but did not determine Birkhoff-James orthogonality for

finite elementary operators.

Corollary 2.120. [ 16,Corollary 1] Let Q be a normal operator in L(H)

with δpr(Q) = ϕ and S ̸∈ KerδQ be a positive operator in C1(H) then

∥δQ(Z) +H∥ ≥ ∥H∥ for all Z ∈ C1(H).

Corollary 2.120 characterized the points C1(H), the trace class opera-

tors that are orthogonal to the range of elementary operators in non-

smoothness case but did not determine Birkhoff-James orthogonality for

finite elementary operators.

In [70] Okelo characterized orthogonality of operators that are elementary

in classes that attain norms. In [70] required conditions for norm attain-

ability of Hilbert spaces operators were obtained. Okelo [70] then gave
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the range-kernel orthogonality results for elementary operators when they

are generalized by norm-attainable operators in norm-attainable groups.

The following are Okelo’s main results:

Proposition 2.121. [70, Proposition 3.1] Suppose Q,R,Z ∈ Ω and

ZR = I where I is an identity element of Ω. Then for δQ,R = QX −

XR and an elementary operator θQ,R(X) = QXR −XRQ(Ran(δQ,R)) ∩

Ker(δQ,Z) = RanθQ,R ∩KerθQ,R.

Proposition 2.121 gives the range-kernel orthogonality results for elemen-

tary operator so but did not characterize finiteness of these elementary

operators. In our study we characterized finiteness of elementary opera-

tors.

Theorem 2.122. [70, Theorem 3.10] Suppose Q, R, S, T ∈ NAH are

normal operators such that QS = SQ, RT = TR, QQ∗ ≤ SS∗, RR∗ ≤

TT ∗. For an elementary operator ϕ(X) = QXR − SXT and G ∈

NA(H) satisfying Q ≤ R = S ≤ T then ∥ϕ(X)+G∥ ≥ ∥G∥ for all X ∈

NA(H).

Theorem 2.122 shows that the range of a Jordan elementary operator is

orthogonal to its kernel in norm-attainable classes but did not characterize

finiteness of these elementary operators.

2.5 Summary of gaps

Williams [92] showed that the group of finite operators is uniformly closed,

involves normal operators, paranormal operators, operators that have
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completely continuous direct summand, and every C∗ algebra but the

study did not give a detailed description of finite operators. In our study

we gave a detailed description of finite operators and established orthog-

onality conditions for these operators. Okelo and Agure [72] presented

various notions of orthogonality in normed spaces and gave the range-

kernel orthogonality results for elementary operators, they established

orthogonality conditions for elementary operators but did not establish

orthogonality conditions when elementary operators are finite. In our

study, therefore we considered finiteness of elementary operators and es-

tablished orthogonality conditions for finite elementary operators in terms

of James-Birkhoff orthogonality.
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Chapter 3

RESEARCH

METHODOLOGY

3.1 Introduction

In this chapter, we discuss the methods that we used to successfully

achieve our objectives. The methodology involved the use of Gram Schmidt

procedure, Berberian technique, Fuglede Putnam property, use of known

inequalities such as Cauchy Schwarz inequality, triangle inequality, Hölder’s

inequality, Minkowski’s inequality and Bessel’s inequality. We also used

technical approaches of tensor products and direct sum decomposition.

3.2 Known inequalities

In this section, we discuss the known inequalities and they include Cauchy

Schwarz inequality, triangle inequality, Hölder’s inequality, Minkowski’s

inequality and Bessel’s inequality.
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3.2.1 Cauchy-Schwarz inequality

Let (Y, ⟨., .⟩) be an inner product space over a field F then for all s, p ∈

Y |⟨s, p⟩| ≤
√

⟨s, s⟩
√

⟨p, p⟩. Moreover, given any s, p ∈ Y , the in-

equality |⟨s, p⟩| ≤
√

⟨s, s⟩
√
⟨p, p⟩ holds if and only if s and p are

linearly dependent. Indeed, if s = 0 or p = 0, then the inequality

holds. Assume that s ̸= p and p ̸= 0. For any η ∈ F, we have

0 ≤ ⟨s − ηp, s − ηp⟩ = ⟨s, s⟩ - η⟨s, p⟩-η⟨p, s⟩-ηη⟨p, p⟩. Now choosing

η = ⟨s,s⟩
⟨p,p⟩ , we have 0 ≤ ⟨s, s⟩ − |⟨s,p⟩|2

⟨p,p⟩ − |⟨s,p⟩|2
⟨p,p⟩ + |⟨s,p⟩|2

⟨p,p⟩ =⟨s, s⟩ − |⟨s,p⟩|2
⟨p,p⟩ .

Hence, |⟨s, p⟩| ≤
√

⟨s, s⟩
√
⟨p, p⟩. Assume that |⟨s, p⟩| ≤

√
⟨s, s⟩

√
⟨p, p⟩.

We show that s and p are linearly dependent. If s = 0 and p = 0, then

s and p are obviously linearly dependent. We hence assume that s ̸= 0

and p ̸= 0. Then ⟨p, p⟩ ̸= 0 with η = ⟨s,s⟩
⟨p,p⟩ , we have that ⟨s − ηp, s − ηp⟩

= ⟨s, s⟩ − |⟨s,p⟩|2
⟨p,p⟩ = 0. That is, ⟨s− ηp, s− ηp⟩ = 0 ⇒ s = ηp. That is, s

and p are linearly dependent.

3.2.2 Triangle inequality

For all s, p ∈ R, ∥s+ p∥ ≤ ∥s∥+ ∥p∥. Indeed, we have that

∥s+ p∥2 = ⟨s+ p, s+ p⟩

= ∥s∥2 + ⟨s, p⟩+ ⟨p, s⟩+ ∥p∥2

= ∥s∥2 + 2Re⟨s, p⟩+ ∥p∥2

≤ ∥s∥2 + 2|⟨s, p⟩|+ ∥p∥2

≤ ∥s∥2 + 2∥s∥∥p∥+ ∥p∥2

= (∥s∥+ ∥p∥)2
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Taking square roots gives the triangle inequality i.e ∥s+ p| ≤ ∥s∥+ ∥p∥.

3.2.3 Hölder’s inequality for sequences

Let (sn) ∈ lp and (tn) ∈ lq, where p ≥ 1 and 1
p
+ 1

q
= 1, then

∞∑
k=1

|sktk| ≤ (
∞∑
k=1

|sk|p)
1
p (

∞∑
k=1

|tk|q)
1
q .

Indeed, if
∑∞

k=1 |sk|p = 0 or
∑∞

k=1 |tk|p = o. Then the inequality holds.

Assume that
∑∞

k=1 |sk|p ̸= 0 and
∑∞

k=1 |tk|q ̸= 0. Then for k = 1, 2, .. by

Young’s inequality we have,

|sk||tk|
(
∑∞

k=1 |sk|p)
1
p (
∑∞

k=1 |tk|q)
1
q

≤ 1

p

|sk|p∑∞
k=1 |sk|p

+
1

q

|tk|q∑∞
k=1 |tk|q

.

Hence ∑∞
k=1 |sktk|

(
∑∞

k=1 |sk|p)
1
p (
∑∞

k=1 |tk|q)
1
q

≤ 1

p
+

1

q
= 1.

This implies that

∞∑
k=1

|sktk| ≤ (
∞∑
k=1

|sk|p)
1
p (

∞∑
k=1

|tk|q)
1
q .

3.2.4 Minkowski’s inequality for sequences

Let p > 1 and (gn), (hn) be sequences in lp. Then

(
∞∑
k=1

|gk + hk|p)
1
p ≤ (

∞∑
k=1

|gk|p)
1
p + (

∞∑
k=1

|hk|p)
1
p .

91



Indeed, let q = p
p−1

. If
∑∞

k=1 |gk+hk|p = 0, then the inequality holds. We

therefore assume that
∑∞

k=1 |gk + hk|p ̸= 0. Then we have,

∞∑
k=1

|gk + hk|p =
∞∑
k=1

|gk + hk|p−1|gk + hk|

≤
∞∑
k=1

|gk + hk|p−1|gk|+
∞∑
k=1

|gk + hk|p−1|hk|

≤ (
∞∑
k=1

|gk + hk|(p−1)q)
1
q [(

∞∑
k=1

|gk|p)
1
p + (

∞∑
k=1

|hk|p)
1
p ]

= (
∞∑
k=1

|gk + hk|p)
1
q [(

∞∑
k=1

|gk|p)
1
p + (

∞∑
k=1

|hk|p)
1
p ].

Dividing both sides by (
∑∞

k=1 |gk + hk|p)
1
q we have

(
∞∑
k=1

|gk + hk|p)
1
p = (

∞∑
k=1

|gk + hk|p)1−
1
p ≤ (

∞∑
k=1

|gk|p)
1
p + (

∞∑
k=1

|hk|p)
1
p .

3.2.5 Bessel’s inequality

Let P be an orthonormal set in an inner product space Y . Let q1, q2, ...qn

be a finite subset of P , for all r ∈ Y . Then
∑n

i=1 |⟨r, qi⟩|2 ≤ ∥r∥2.

Indeed, we show that 0 ≤ ∥r −
∑n

i=1⟨r, qi⟩qi∥2 Let αi = ⟨r, qi⟩ and αj =
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⟨r, qj⟩. Then we have,

0 ≤ ∥r −
n∑
i=1

⟨r, qi⟩qi∥2

≤ ⟨r −
n∑
i=1

αiqi, r −
n∑
i=1

αiqi⟩

≤ ⟨r, r⟩ − ⟨r,
n∑
i=1

αiqi⟩ − ⟨
n∑
i=1

αiqi, r⟩+ ⟨
n∑
i=1

αiqi,

n∑
i=1

αiqi⟩

= ∥r∥2 −
n∑
i=1

αi⟨r, qi⟩ −
n∑
i=1

αi⟨qi, r⟩+
n∑
i=1

n∑
i=1

αiαi⟨qi, qi⟩but⟨qi, qi⟩ = 1

= ∥r∥2 −
n∑
i=1

αiαi +
n∑
i=1

αiαi +
n∑
i=1

|αi|2

= ∥r∥2 −
n∑
i=1

|αi|2.

That is
∑n

i=1 |αi|2 = ∥r∥2.

This implies that
∑n

i=1 |⟨r, qi⟩|2 ≤ ∥r∥2.

3.2.6 Gram Schmidt procedure

If {k1, k2, ...kp} is a set that is linearly independent in an inner product

space X then there exist an orthogonal set {j1, j2, ...jp} in X such that

span {k1, k2, ...ki} = span{k1, k2, ...ki} for (i = 1, ..., p).

j1 = k1.

j2 = k2 − ⟨k2,j1⟩
⟨j1,j1⟩ j1.

j3 = k3 − ⟨k3,j1⟩
⟨j1,j1⟩ j1 −

⟨k3,j2⟩
⟨j2,j2⟩ j2.

.
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.

.

jp = kp − ⟨kp,j1⟩
⟨j1,j1⟩ j1 −

⟨kp,j2⟩
⟨j2,j2⟩ j2, ...

⟨kp,jp−1⟩
⟨jp−1,jp−1⟩jp−1.

Then j1, j2, ...jn is an orthogonal basis for j.

Normalizing each jj results in an orthonormal basis. That is uj =
ji

∥ji∥ .

3.3 Technical approaches

In this section we discuss technical approaches and they include Direct

sum decomosition and tensor products.

3.3.1 Direct sum decomposition

Let Q and R be subspaces of Z. Then Z is said to be the direct sum of

Q and R if Z = Q+R and Q ∩R = 0 and we write Z = Q⊕R.

3.3.2 Tensor product

Let R and S be vector spaces over K and let Q be the subspace of the

free vector space KR×S generated by all the vectors of the form;

α(r, s) + β(r8, s)− (αg + βg8, s)

and

α(r, s) + β(g, h8)− (r, αs+ βs8),
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∀α, β ∈ K and r, r8 ∈ X, s, s8 ∈ Y . Then the quotient space K(R×S)/Q is

called the tensor product of R and S denoted by R⊗ S.

3.3.3 Berberian technique

Proposition 3.1. Let Y be a complex Hilbert space, then there is a Hilbert

space Ŷ ⊃ Y and ψ : L(Y ) → L(Ŷ ) (P → P̂ ) where ψ is a ∗−isometric-

isomorphism satisfying the order such that:

(1) ψ(J∗) = ψ(J)∗;

(2) ψ(I) = Î;

(3) ψ(αJ + βQ) = αψ(J) + βψ(Q);

(4) ψ(JQ) = ψ(J) + ψ(Q);

(5) ∥ψ(J)∥ = ∥J∥;

(6) ψ(J) ≤ ψ(Q) if J ≤ Q, ∀J,Q ∈ L(Y ), α, β ∈ C;

(7) σ(J) = σ(Ĵ), σa(J) = σa(Ĵ) = σp(Ĵ).

3.3.4 Putnam-Fuglede property

Let Q,P ∈ L(H) be normal operators, then the pair (P,Q) of operators

has the following Putnam-Fuglede property(PF ):

If PX = XQ where X ∈ L(H), then P ∗X = XQ∗.
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Chapter 4

RESULTS AND

DISCUSSION

4.1 Introduction

In this chapter, we give the results of our study. We consider finiteness of

elementary operators, orthogonality conditions for finite elementary op-

erators and Birkhoff-James orthogonality for finite elementary operators.

4.2 Finiteness of elementary operators

Proposition 4.1. Let Ω be a normed space, then for S ∈ Ω, σp(S) ̸= ∅

if S is normaloid.

Proof. Let S ∈ Ω be normaloid, then ∥S∥ = r(S). This means that there

exist λ ∈ σp(S) such that |λ| = ∥S∥. It is known that σp(S) ⊆ σap(S) ⊆

σ(S). Therefore, σp(S) = σap(S). But λ is in the boundary of σp(S) and
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since this is a subset of the approximate point spectrum of S, we have

that λ ∈ σp(S) = σap(S). But for a sequence {xn}n∈N of unit vectors we

have, ∥(S − λI)xn∥ → 0. So 0 ∈ σp(S) and hence σp(S) ̸= ∅.

Proposition 4.2. Every normaloid operator is finite.

Proof. From Proposition 4.1 we have that σp(S) ̸= ∅ if S is normaloid. To

show that every normaloid operator is finite, we let S to be a normaloid

operator, i.e ∥S∥ = r(S). Hence, there exist λ ∈ σp(S) such that |λ| =

∥S∥. By definition, an operator S in a normed space Ω is finite if ∥SX −

XS − I∥ ≥ 1, for all X ∈ Ω. But ∥(S − λI)xn∥ → 0 with ∥xn∥ = 1.

From Gram schmidt procedure {xn} is a normalized sequence and hence

we have,

∥(SX −XS)− I∥ = ∥((S − λI)X −X(S − λI))− I∥

≥ |⟨(S − λI)Xxn,xn⟩ − ⟨X(S − λI)xn,xn⟩ − I|

≥ |⟨(S − λI)X −X(S − λI)⟩xn,xn − I|

≥ |⟨(SX −XS)xn,xn⟩ − I|.

Letting n→ ∞ we obtain ∥(SX −XS)− I∥ ≥ 1.

Lemma 4.3. Let S ∈ Ω be normaloid and So ∈ Ω be norm-attainable such

that SSo = SoS. Then for every η ∈ σp(So), ∥So − (SX − XS)∥ ≥ |η|

∀X ∈ Ω.

Proof. From [71], if So ∈ Ω is norm-attainable, then it is normal. So, we

let η ∈ σp(So) andMη be the eigenspace associated with η. Because SSo =

SoS, we have SS∗
o = S∗

oS by Fuglede Putnam’s theorem [41]. Hence Mη
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reduces both S and So. Using the decomposition of H = Mη ⊕M⊥
η , we

define S, So and X as follows:

S =

 S1 0

0 S1

 , So =

 η 0

0 S2

 and X =

 X1 X2

X3 X4

 .

We have,

∥So − (SX −XS)∥ =

∥∥∥∥∥∥
 η − (S1X1 −X1S1) ∗

∗ ∗

∥∥∥∥∥∥
≥ ∥η − (S1X1 −X1S1)∥

≥ |η|
∥∥∥∥1− ((

S1X1

η

)
−
(
X1S1

η

))∥∥∥∥
≥ |η|.

Lemma 4.4. Every paranormal operator in a unital C∗ algebra Ω is finite.

Proof. Let S be a paranormal operator, then S is normal i.e S∗S =

SS∗. By Berberian theorem 3.3.3, we have that, there exist a ∗-isometric

isomorphism ψ : Ω → Ω that preserves order such that,

∥S∥2 = ∥SS∗∥ = 1 ≤ ∥(SX −XS)− I∥

≤ ∥ψ(SX −XS)− I∥

≤ ∥(ψ(S)ψ(X)− ψ(X)ψ(S))− I∥.

If S ∈ Ω is an element of F (H) such that σp(S) ̸= ∅ then it results from

Proposition 4.2 that ψ(S) ∈ Ω is finite i.e.

∥(SX −XS)− I∥ = ∥(ψ(S)ψ(X)− ψ(X)ψ(S))− I∥ ≥ 1.
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Theorem 4.5. Let S ∈ Ω be norm-attainable. Then J = S + P is finite

where P is compact in a C∗-algebra Ω.

Proof. Let S be norm-attainable, since Ω is a unital C∗-algebra, it follows

that J = S +P is finite. Indeed from Lemma 4.4 and Proposition 4.2 we

have,

∥J∥2 = ∥JJ∗∥ = 1 ≤ ∥(JX −XJ)− I∥

≤ ∥(SX −XS)− I∥

≤ ∥(SX + PP−1 −XS + P−1P )− I∥

≤ ∥(S + P )(X + P−1)− (X + P−1)(S + P )− I∥.

For Y = X +P−1 we have, ∥(S +P )Y − Y (S +P )− I∥ ≥ 1. This proves

that J = S + P is a finite operator.

Corollary 4.6. Let S ∈ Ω be log-hyponormal and S∗be p-hyponormal

then ∥J − (SX −XSo)∥ ≥ ∥J∥, for all X ∈ Ω and for all J ∈ kerδS,So .

Proof. If J ∈KerδS,So , then also J ∈KerδS∗S∗
o
by Putnam-Fuglede’s the-

orem [41]. Therefore, SJJ∗ = JS∗
o = JJ∗S. Since S is log-hyponormal,

JJ∗ is normal and S(JJ∗) = (JJ∗)S. Since X ∈ Ω, we deduce that

∥J∥2 = ∥JJ∗∥ = ∥JJ∗ − SXJ∗ −XJ∗S∥

≤ ∥JJ∗ − SXJ∗ −XSoJ
∗∥

≤ ∥J∗∥∥J − (SX −XSo)∥
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By Cauchy-Schwarz inequality 3.2.1, ∥J∥2 = ∥J∥∥J∗∥.

This implies that ∥J∥2 = ∥J∥∥J∗∥ ≤ ∥J∗∥∥J − (SX −XSo)∥.

Dividing both sides by ∥J∗∥ we obtain,

∥J∥ ≤ ∥J − (SX −XSo)∥.

Remark 4.7. At this point, we characterize finiteness of elementary op-

erators in a general set up. Let Cn(S, So) be the set of all (S, So) ∈ Ω×Ω

such that S and So have an n-dimensional reducing subspace Jn(S, So)

satisfying S | Jn(S, So) = So | Jn(S, So).

Now, we characterize finiteness in the cartesian product of Ω × Ω in the

next proposition.

Proposition 4.8. Let (S, So) ∈ Cn(S, So). Then, the following inequality

holds i.e ∥(SX −XSo)− I∥ ≥ 1.

Proof. Let

 S1 0

0 0

 and

 S2 0

0 0

 be the matrix representation of

S and So respectively relative to the decomposition H = H1 ⊕H⊥
1 where

H1 is an n-dimensional reducing subspace of S and So i.e H1 = Jn(S, So).

For any operator X on H has a representation X =

 X1 0

0 0

 . Let
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I =

 I1 0

0 0

 . It follows that,

∥(SX −XSo)− I∥ =

∥∥∥∥∥∥
 S1X1 0

0 0

−

 X1S2 0

0 0

−

 I1 0

0 0

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 S1X1 −X1S2 0

0 0

−

 I1 0

0 0

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 (S1X1 −X1S2)− I1 0

0 0

∥∥∥∥∥∥
≥ ∥(S1X1 −X1S2)− I1∥.

This implies that

∥(SX −XSo)− I∥ ≥ ∥(S1X1 −X1S2)− I1∥ ≥ ∥I1∥ = ∥I∥.

Hence, ∥(SX −XSo)− I∥ ≥ 1.

Proposition 4.9. Let (S, So) ∈ Cn(S, So). Then the following inequality

holds i.e ∥(SXSo)− I∥ ≥ 1.

Proof. Let S, So, X and I have the following representation:

S =

 S1 0

0 0

,X =

 X1 0

0 0

, So =

 S2 0

0 0

 , and I =

 I1 0

0 0
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From Proposition 4.8, it follows that,

∥(SXSo)− I∥ =

∥∥∥∥∥∥
 S1 0

0 0

 X1 0

0 0

 S2 0

0 0

−

 I1 0

0 0

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 S1X1S2 0

0 0

−

 I1 0

0 0

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 (S1X1S2)− I1 0

0 0

∥∥∥∥∥∥ .
≥ ∥(S1X1S2)− I1∥.

This implies that

∥(SXSo)− I∥ ≥ ∥(S1X1S2)− I1∥ ≥ ∥I1∥ = ∥I∥.

Hence, ∥(SXSo)− I∥ ≥ 1.

Theorem 4.10. Let (S, So) ∈ Cn(S, So). Then the following inequality

holds i.e ∥(SXSo + SoXS)− I∥ ≥ 1.

Proof. Let S, So,X, and I have the following representation[decomposition].

S =

 S1 0

0 0

,X =

 X1 0

0 0

, So =

 S2 0

0 0

, and I =

 I1 0

0 0

 .
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From Proposition 4.8 and Proposition 4.9 we have,

∥(SXSo + SoXS)− I∥ =

∥∥∥∥∥∥
 S1X1S2 0

0 0

+

 S2X1S1 0

0 0

−

 I1 0

0 0

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 S1X1S2 + S2X1S1 0

0 0

−

 I1 0

0 0

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 (S1X1S2 + S2X1S1)− I1 0

0 0

∥∥∥∥∥∥
≥ ∥(S1X1S2 + S2X1S1)− I1∥.

This implies that

∥(SXSo + SoXS)− I∥ ≥ ∥(S1X1S2 + S2X1S1)− I1∥ ≥ ∥I1∥ = ∥I∥.

Hence, ∥(SXSo + SoXS)− I∥ ≥ 1.

Theorem 4.11. Let (S, So) ∈ Cn(S, So). Then the following inequality

holds i.e ∥(SXSo + CXCo)− I∥ ≥ 1.

Proof. Let S, So, C, Co,X, and I have the following representation[decomposition].

S =

 S1 0

0 0

 , X =

 X1 0

0 0

 , So =

 S2 0

0 0

 , C =

 C1 0

0 0

 ,

Co =

 C2 0

0 0

 and I =

 I1 0

0 0

 .
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From Theorem 4.10 we have,

∥(SXSo + CXCo)− I∥ =

∥∥∥∥∥∥
 S1X1S2 0

0 0

+

 C1X1C2 0

0 0

−

 I1 0

0 0

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 S1X1S2 + C1X1C2 0

0 0

−

 I1 0

0 0

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 (S1X1S2 + C1X1C2)− I1 0

0 0

∥∥∥∥∥∥
≥ ∥(S1X1S2 + C1X1C2)− I1∥.

This implies that

∥(SXSo + CXCo)− I∥ ≥ ∥(S1X1S2 + C1X1C2)− I1∥ ≥ ∥I1∥ = ∥I∥.

Hence, ∥(SXSo + CXCo)− I∥ ≥ 1.

Theorem 4.12. Let (S, So) ∈ Cn(S, So). Then the following inequality

holds i.e ∥
∑n

i=1 SiXCi − I∥ ≥ 1.

Proof. Let Si, X, Ci and I have the following representation.

Si =

 S1 0

0 0

 , X =

 X1 0

0 0

 , Ci =

 C1 0

0 0

 , I =

 I1 0

0 0

 .
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From Theorem 4.11 it follows that,

∥∥∥∥∥
n∑
i=1

SiXCi − I

∥∥∥∥∥ =

∥∥∥∥∥∥
n∑
i=1

 S1 0

0 0

 X1 0

0 0

 C1 0

0 0

−

 I1 0

0 0

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n∑
i=1

 S1X1C1 0

0 0

−

 I1 0

0 0

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n∑
i=1

 (S1X1C1)− I1 0

0 0

∥∥∥∥∥∥
≥

∥∥∥∥∥
n∑
i=1

(S1X1C1)− I1

∥∥∥∥∥ .
This implies that

∥
n∑
i=1

SiXCi − I∥ ≥ ∥
n∑
i=1

(S1X1C1)− I1∥ ≥ ∥I1∥ = ∥I∥.

Hence, ∥
∑n

i=1 SiXCi − I∥ ≥ 1.

Remark 4.13. It is known [78] that there is a compact operator C and

that R(δc) = K(H). As a result we have that the dist(I,K(H)) = 1,

where dist(I,K(H)) is the distance from I to K(H). Hence, if S, So are

compact operators, then dist(I, R(δS,So)) = 1.

4.3 Orthogonality conditions for finite ele-

mentary operators

In this section, we characterize orthogonality conditions for finite elemen-

tary operators. Let Ω denote a Banach algebra that is complex with
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identity I and let σr(Ω), σl(Ω) denote, respectively the right spectrum

and the left spectrum of Ω. From [13]

SnX −XSn =
∑n−i−1

i=0 Sn−i−1(SX −XS)Si for all X ∈ Ω.

If SJ = JS we have,

nJSn−1 = SnX−XSn−
∑n−i−1

i=0 Sn−i−1((SX−XS)−J)Si for all X ∈ Ω.

Proposition 4.14. Let S ∈ Ω, xn be an increasing sequence of positive

integers and Sxn converge to Z ∈ Ω, with 0 ̸∈ σr(Z)∩σl(Z). If there exist

a constant λ such that ∥Sn∥ ≤ λ for all integers n and if So is the left or

right inverse of Z then

λ2∥So∥∥(SX −XS)− J∥ ≥ ∥J∥ for all X ∈ Ω and for all J ∈ KerδS.

Proof. Let X ∈ Ω, since

nJSn−1 = SnX−XSn−
∑n−i−1

i=0 Sn−i−1((SX−XS)−J)Si for SJ = JS.

We can write

(xn + 1)JSxn+1−1 = Sxn+1X −XSxn+1 −
xn+1−i−1∑

i=0

Sxn+1−i−1((SX −XS)− J)Si

= Sxn+1X −XSxn+1 −
xn−i∑
i=0

Sxn−i((SX −XS)− J)Si.

when both sides are divided by xn + 1 and if we take the norms we have,

∥JSxn∥ ≤ 1
xn+1

∥|Sxn+1|+|Sxn+1|∥∥X∥+ 1
xn+1

∑xn−i
i=0 ∥Sxn−i∥∥(SX−XS)−

J∥∥Si∥
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Since ∥Sn∥ ≤ λ we have that ∥Sxn+1∥ ≤ λ and hence we obtain,

∥JSxn∥ ≤ 2λ
xn+1

∥X∥+ λ2∥(SX −XS)− J∥.

Letting n→ ∞ we obtain,

∥JSxn∥ ≤ λ2∥(SX −XS)− J∥.

But Sxn converges to Z, so we have,

∥JZ∥ ≤ λ2∥(SX −XS)− J∥.

Now, since So is in the right or the left of Z we have,

∥J∥ ≤ ∥So∥λ2∥(SX −XS)− J∥.

Remark 4.15. Let S ∈ L(H) and xn be a sequence that is increasing

of integers that are positive. Assume that there is a constant λ and that

∥Sn∥ ≤ λ for all integers n

(i) . If Sxn → P , with 0 ̸∈ σr(P ) ∩ σl(P ), then

λ2∥(SX−XS)−J∥ ≥ ∥J∥ for all X ∈ L(H) and for all J ∈ KerδS.

(ii) . If Sxn → P +K, with K compact and 0 ̸∈ σr(P ) ∩ σl(P ), then

λ2∥(SX − XS) − J − K∥ ≥ ∥J∥ for all X ∈ L(H) and for all

J ∈ KerδS.
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Theorem 4.16. Let S ∈ L(H) such that Sn = I for some integer n. Then

λ2∥(SX −XS)− J∥ ≥ ∥J∥ for all X ∈ L(H) and for all J ∈ KerδS.

Proof. Since Sn = {I, S, S2, ...Sm−1} for all integers n, ∥Sn∥ ≤ λ, n ∈ N

and Sxn = I, where xn = nm, n ∈ N. It is known that [13]

nJSn−1 = SnX −XSn −
∑n−i−1

i=0 Sn−i−1((SX −XS)− J)Si, for all X ∈

L(H).

From Proposition 4.14 we have that

(xn + 1)JSxn+1−1 = Sxn+1X −XSxn+1 −
xn+1−i−1∑

i=0

Sxn+1−i−1(SX −XS − J)Si.

(xn + 1)JSxn = Sxn+1X −XSxn+1 −
xn−i∑
i=0

Sxn−i((SX −XS)− J)Si.

When both sides are divided by xn+1 and if we take the norms we have,

∥JSxn∥ ≤ 1
xn+1

∥|Sxn+1|+|Sxn+1|∥∥X∥+ 1
xn+1

∑xn−i
i=0 ∥Sxn−i∥∥(SX−XS)−

J∥∥Si∥

Since ∥Sn∥ ≤ λ we have that ∥Sxn+1∥ ≤ λ and hence we obtain,

∥JSxn∥ ≤ 2λ
xn+1

∥X∥+ λ2∥(SX −XS)− J∥.

Since Sxn = I we have,

∥J∥ ≤ 2λ
xn+1

∥X∥+ λ2∥(SX −XS)− J∥.

Letting n tend to infinity, we get

∥J∥ ≤ λ2∥(SX −XS)− J∥.
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Hence, ∥J∥ ≤ λ2∥(SX −XS)− J∥.

Corollary 4.17. Let S1, So ∈ L(H) such that Sm1 = I and Smo = I for

some integer m. Then

∥(S1X −XSo)− J∥ ≥ ∥J∥ for all X ∈ L(H) and for all J ∈ KerδS1,So.

Proof. Consider the operators P , S and Y defined on H ⊕H.

P =

 S1 0

0 So

 , S =

 0 J

0 0

 and Y =

 0 X

0 0

 .

Then P is normal on H ⊕H and that Pm = 1, PS = SP i.e S ∈ Kerδp.

Since PY − Y P =

 0 S1X

0 0

−

 0 XSo

0 0



∥(PY − Y P )− S∥ =

∥∥∥∥∥∥
 0 S1X −XSo

0 0

−

 0 J

0 0

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 0 (S1X −XSo)− J

0 0

∥∥∥∥∥∥ .
Then, it follows that

∥PY − Y P − S∥ ≥ ∥S∥.

Consequently, from Theorem 4.12 we obtain,

∥(S1X −XSo)− J∥ ≥ ∥(PY − Y P )− S∥ ≥ ∥S∥ = ∥J∥.

Proposition 4.18. Let S, So ∈ F (H). If So ∈ [F (H)]−1 and ∥S∥∥S−1
o ∥ ≤

1, then ∥δS,So + J∥ ≥ ∥J∥ for all X ∈ F (H) and J ∈ KerδS,So.

109



Proof. Let J ∈ F (H) such that SJ = JSo. Therefore, SJS−1
o = J . But

∥S∥∥S−1
o ∥ = 1. It follows from [13] Theorem 2.1 that

∥SY S−1
o − Y + J∥ ≥ ∥J∥, ∀Y ∈ F (H).

If we set X = Y S−1
o then we obtain,

∥(SX −XSo) + J∥ ≥ ∥J∥ for all X ∈ F (H).

But δS,So(X)=SX −XSo.

Hence, ∥δS,So(X) + J∥ ≥ ∥J∥, for all J ∈ KerδS,So and for all X ∈

F (H).

Remark 4.19. If (J, |∥.∥|) is a norm ideal then the norm |∥.∥| is unitarily

invariant such that |∥SXP∥| = |∥T∥| for all T ∈ J and for all unitary

operators.

Remark 4.20. Let (J, |∥.∥|) be a norm ideal and S, P ∈ L(H). If S is

isometric and P contractive, then

|∥δS,P (X) + T∥| ≥ |∥T∥| for all X ∈ J and for all T ∈ KerδS,P .

Proposition 4.21. Let (J, |∥.∥|) be a norm ideal and S ∈ F (H). Sup-

pose that f(S) is an operator that is subnormal and cyclic, where f is a

function that is analytic and nonconstant on an open set containing σ(S).

Then

|∥δS(X) + T∥| ≥ |∥T∥| for all X ∈ J and for all T ∈ {S} ∩ J .
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Proof. Let T ∈ J such that ST = TS. This implies that Tf(S) = f(S)T

and Sf(S) = f(S)S. Since f(S) is a cyclic subnormal operator, it follows

from [93] that S and T are subnormal. But every subnormal operator is

hyponormal [23]. Therefore, T is normal. Consequently, ST = TS implies

that ST ∗ = T ∗S by Putnam-Fuglede Theorem 3.3.4. Hence, Ran(T ) and

Ker(T )⊥ reduces S and S |R(T ) and S |Ker(T )⊥ are normal operators. Let

Tox = Tx for each x ∈ Ker(T ), it results that δS,P (To) = δS∗,P ∗(To) = 0.

Let S = S1 ⊕ S2 with respect to H = R(T ) ⊕ R(T )
⊥
and P = P1 ⊕ P2

with respect to H = Ker(T )⊥ ⊕Ker(T ). Then we can define S, T and

X as follows

S =

 S1 0

0 0

 , T =

 T1 0

0 0

 and X =

 X1 0

0 0

.

Then,

|∥(SX −XS) + T∥| =

∣∣∣∣∣∣
∥∥∥∥∥∥
 S1X1 −X1S1 + T1 0

0 0

∥∥∥∥∥∥
∣∣∣∣∣∣ .

This implies that

|∥(SX −XS) + T∥| ≥ |∥S1X1 −X1S1 + T1∥| ≥ |∥T1∥ = ∥T∥|.

Hence, |∥δS(X) + T∥| ≥ |∥δS1(X) + T1∥| ≥ |∥T1∥| = |∥T∥|.

Proposition 4.22. Let S, P ∈ F (H) such that the pair (S, P ) possesses

the PF property. Then, |∥δS,P + T∥| ≥ |∥T∥| for all X ∈ J and T ∈

KerδS,P .

Proof. Let T ∈ J , since the pair S, P satisfies PF property. Then,

Ran(T ) decreases S andKer(T )⊥ decreases P and S |Ran(T ) and P |Ker(T )⊥

are normal operators. Let To : Ker(T )
⊥ → Ran(T ) be defined by setting
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Tox = Tx for each x ∈ Ker(T ), it follows that δS,P (To) = δS∗,P ∗(To) = 0.

Let S = S1 ⊕ S2 in relation to H = Ran(T )⊕Ran(T )
⊥
and P = P1 ⊕P2

with respect to H = Ker(T )⊥ ⊕ Ker(T ). Let S, P ,T and X have the

following representation.

S =

 S1 0

0 0

 , P =

 P1 0

0 0

T =

 T1 0

0 0

 andX =

 X1 X2

X3 X4

.

From Proposition 4.2 we have,

|∥(SX −XP ) + T∥| =

∣∣∣∣∣∣
∥∥∥∥∥∥
 (S1X1 −X1P1) + T1 0

0 0

∥∥∥∥∥∥
∣∣∣∣∣∣ .

This means that

|∥(SX −XP ) + T∥| ≥ |∥(S1X1 −X1P1) + T1∥| ≥ |∥T1∥| = |∥T∥|.

Hence, |∥δS,P (X) + T∥| ≥ |∥δS1,P1(X) + T1∥| ≥ |∥T1∥| = |∥T∥|.

Proposition 4.23. Let S, P ∈ F (H) be normal operators such that SP =

PS and S∗S + P ∗P > 0. For an elementary operator E(X) = SXP −

PXS, |∥E(X) + J∥| ≥ |∥J∥| for all J ∈ KerE.

Proof. Assume that P−1 ∈ L(H), then from SP = PS and SJP = PJS

we get, SP−1J = JP−1S. Therefore if theorem AK [81] is applied to the

operators SP−1, P−1S and J we get,

|∥(SX −XS) + J∥| ≥ |∥(SP−1PXP − PXP−1S) + J∥| ≥ |∥J∥|.

Consider now the case when P is injective i.e KerP = 0. Let σn = {λ ∈

C : λ ≤ 1
n
} and let EP (σn) be the respective spectral projector. If we put

Pn = I−EP (σn). The subspace PnH decreases both S and P (since they
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commute and are normal). Therefore, in relation to the decomposition

H = (I − Pn)H ⊕ Pn(H)

S =

 0 0

0 S
(n)
1

 , P =

 0 0

0 P
(n)
1

 J =

 J
(n)
11 J

(n)
12

J
(n)
21 J

(n)
22

 and X = X
(n)
11 X

(n)
12

X
(n)
21 X

(n)
22

.

It can be seen that P
(n)
1 acting on Pn(H) is invertible. It follows that

|∥SXP − PXS + J∥| ≥ |∥Pn(SXP − PXS + J)Pn∥|

= |∥S(n)
1 X

(n)
22 P

(n)
1 − P

(n)
1 X

(n)
22 S

(n)
1 + J22∥|

≥ |∥J22∥| = |∥PnJPn∥|

Therefore, we have |∥SXP − PXS + J∥| ≥ |∥PnJPn∥|.

Applying Lemma 3 [81] we obtain |∥SXP − PXS + J∥| ≥ |∥J∥|.

Now, we assume that KerS ∩ KerP = {0}. Let S, P , J and X have

the following representation in relation to the space decomposition H =

KerP ⊕Ho(Ho ⊖KerP ).

S =

 S1 0

0 S2

 , P =

 0 0

0 P2

 , J =

 J11 J12

J21 J22

 andX =

 X11 X12

X21 X22

.

Operators S1 and P2 are injective and we have,

(SXP − PXS) =

 0 S1X12P2

−P2X21S1 S2X22P2 − P2X22S2

.

Since SJP = PJS = 0, then S2J22P2 = P2J22S2 and S1J12P2 = P2J21S1 =
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0 since S1 and P2 are injective and their ranges are dense. We have,

|∥SXP − PXS + J∥| =

∣∣∣∣∣∣
∥∥∥∥∥∥
 0 S1X12P2

−P2X21S1 S2X22P2 − P2X22S2

+

 J11 J12

J21 J22

∥∥∥∥∥∥
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∥∥∥∥∥∥
 J11 S1X12P2

−P2X21S1 S2X22P2 − P2X22S2 + J22

∥∥∥∥∥∥
∣∣∣∣∣∣ .

Since P2 is injective, we have already shown that

|∥S2X22P2 − P2X22S2 + J22∥| ≥ |∥J22∥|

Applying Lemma GK in [81] and Lemma 2 in [81] we have

|∥S2X22P2 − P2X22S2 + J22∥| ≥

∣∣∣∣∣∣
∥∥∥∥∥∥
 J11 0

0 S2X22P2 − P2X22S2 + J22

∥∥∥∥∥∥
∣∣∣∣∣∣

≥

∣∣∣∣∣∣
∥∥∥∥∥∥
 J11 0

0 J22

∥∥∥∥∥∥
∣∣∣∣∣∣ = |∥J∥|.

Theorem 4.24. Let S, P ∈ L(H) be normal operators such that PS =

SP and E(X) = SXP − PXS. If J ∈ KerE then

|∥E(X) + J∥| ≥ 3−1|∥J∥| (4.3.1)

and

∥E(X) + J∥p ≥ 2|1−
2
P
|∥J∥p, (4.3.2)

where ∥.∥P is the CP norm.
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In particular, for the Hilbert Schmidt-norm we have

∥E(X) + J∥22 ≥ ∥J∥22 + ∥E(X)∥22. (4.3.3)

Proof. Let S, P , J and X have the following representation with respect

to the space decomposition H = H1 ⊕ H2, where H1 = KerS ∩ KerP )

and H2 = H ⊖H1

S =

 0 0

0 S2

 , P =

 0 0

0 P2

 , J =

 J11 J12

J21 J22

 andX =

 X11 X12

X21 X22

.

We have that KerS2 ∩ KerP2 = {0} in H2. Applying Lemma 1 in [81]

and Proposition 4.23 we have,

|∥SXP − PXS + J∥| =

∣∣∣∣∣∣
∥∥∥∥∥∥
 J11 J12

J21 S2X22P2 − P2X22S2 + J22

∥∥∥∥∥∥
∣∣∣∣∣∣

≥ |∥S2X22P2 − P2X22S2 + J22∥|

≥ 2−1 |∥S2X22P2 − P2X22S2 + J22∥|

≥ 2−1 |∥S2X22P2 − P2X22S2∥|

≥ 2−1 |∥SXP − PXS∥| .

For us to prove Inequality 4.3.2 we begin with the initial similar inequali-

ties and then we apply Lemma K in [81] twice and Proposition 4.23. For

1 ≤ p ≤ 2 we have,
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∥SXP − PXS + J∥pp =

∥∥∥∥∥∥
 0 0

0 S2X22P2 − P2X22S2 + J22

+

 J11 J12

J21 J22

∥∥∥∥∥∥
p

p

=

∥∥∥∥∥∥
 J11 J12

J21 S2X22P2 − P2X22S2 + J22

∥∥∥∥∥∥
p

p

≥ 2p−2(∥J11∥pp + ∥J12∥pp + ∥J21∥pp

+ ∥S2X22P2 − P2X22S2 + J22 + J22∥pp)

≥ 2p−2(∥J11∥pp + ∥J12∥pp + ∥J21∥pp + ∥J22∥pp)

≥ 2p−2∥J∥pp.

and for 2 ≤ p <∞ we have,

∥SXP − PXS + J∥pp =

∥∥∥∥∥∥
 J11 J12

J21 S2X22P2 − P2X22S2 + J22 + J22

∥∥∥∥∥∥
p

p

≥ 22−p(∥J11∥pp + ∥J12∥pp + ∥J21∥pp

+ ∥S2X22P2 − P2X22S2 + J22 + J22∥pp)

≥ 22−p(∥J11∥pp + ∥J12∥pp + ∥J21∥pp + ∥J22∥pp)

≥ 22−p∥J∥pp.

Hence, ∥SXP −PXS+J∥pp ≥ 2|1−
2
p
|∥J∥pp and this proves Inequality 4.3.2

Now, if p = 2 Inequality 4.3.2 becomes ∥E(X) + J∥2 ≥ ∥J∥2 and from

Remark 1 in [81] this implies Inequality 4.3.3.

Corollary 4.25. Let S, P ∈ L(H) be normal, then for every operator J

satisfying SJP = J , ∥SXP − PXS + J∥ ≥ ∥J∥ for all X ∈ L(H).
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Proof. Let SJP = J , then SJ = JP−1. Since SJP = J we have that

SJP = PJS which implies that SP−1J = JP−1S. Applying theorem

AK [81] to the operators SP−1, P−1S and J and from Proposition 4.23

we get

∥SXP − PXS + J∥ = ∥SP−1PXP − PXPP−1S + J∥ = ∥J∥.

Now, suppose P is not injective with respect to the decomposition H =

Ker(P )⊥ ∩KerP . Using the condition SJP = J we have,

S =

 S1 0

0 0

 , P =

 P1 0

0 0

 , J =

 J11 J12

J21 J22

 andX =

 X11 X12

X21 X22

.

where S1 is injective, from Proposition 4.23 it follows that

∥SXP − PXS + J∥ =

∥∥∥∥∥∥
 S1X1P1 − P1X1S1 J12

J21 J22

∥∥∥∥∥∥
≥

∥∥∥∥∥∥
 J11 J12

J21 J22

∥∥∥∥∥∥
≥ ∥J∥.

Corollary 4.26. If the assumptions of Theorem 4.24 hold, then ranE ∩

KerE = {0} where the closure can be taken in the more uniform norm.

Hence E(E(X)) = 0 implies that E(X) = 0.

Proof. If S ∈ ranE ∩ KerE, then S = limn→∞E(xn) and E(S) = 0.
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From theorem 2.1 in [81] we have that

∥E(xn)− S∥ ≥ c∥S∥.

Hence,

∥S − S∥ ≥ c∥S∥.

Therefore,

S = 0.

4.4 Birkhoff-James orthogonality for finite

elementary operators

In this section we determine Birkhoff-James orthogonality for finite el-

ementary operators. In [70] we have that for the examples elementary

given in Section 1.2 (inner derivation, generalized derivation, basic ele-

mentary operator, Jordan elementary operator) the following implication

hold for a general bounded linear operator S on a normed linear space

Ω. i.e Ran(S) ⊥ KerS ⇒ Ran(S) ∩KerS = 0 ⇒ Ran(S) ∩KerS = 0,

where Ran(S) denotes the closure of the Range of S and KerS denotes

the Kernel of S and Ran(S) ⊥ KerS means Range of S is orthogonal to

the Kernel of S in the sense of Birkhoff.

Proposition 4.27. Let S ∈ L(H) be isometric, then RanδS ⊥ KerδS.

Proof. From Proposition we know,
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SnX −XSn =
∑n−i−1

i=0 (SX −XS)Si for all X ∈ L(H).

Therefore if SJ = JS we have,

nJSn−1 = SnX −XSn −
∑n−i−1

i=0 Sn−i−1((SX −XS)− J)Si for all X ∈

L(H).

When both sides are divided by n and if we take norms we have,

∥JSn−1∥ ≤ 1
n
∥SnX+XSn∥+ 1

n

∑n−i−1
i=0 ∥Sn−i−1∥∥((SX−XS)−J)∥∥Si∥.

Since S is isometric we have,

∥J∥ ≤ 2
n
∥X∥+ ∥((SX −XS)− J)∥.

Letting n→ ∞ we obtain,

∥(SX −XS)− J∥ ≥ ∥J∥ and hence, RanδS ⊥ KerδS.

Corollary 4.28. Let S, So ∈ L(H) be contractive such that δS,So(J) = 0

for some J ∈ L(H). Then

∥δS,So + J∥ ≥ ∥J∥ for all X ∈ L(H).

Proof. Given J ∈ L(H) and from Proposition 4.27 we have,

nJSn−1
o = SnX −XSno −

∑n−i−1
i=0 Sn−i−1((SX −XSo)− J)Sio for all X ∈

L(H).

If both sides are diveded by n and if norms are taken we have,

∥JSn−1
o ∥ ≤ 1

n
∥SnX+XSno ∥+ 1

n

∑n−i−1
i=0 ∥Sn−i−1∥∥((SX−XSo)−J)∥∥Sio∥.
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But S and So are contractive i.e ∥Sn∥ ≤ 1 and ∥Sno ∥ ≤ 1. This implies

that ∥Sn−1∥ ≤ 1 and ∥Sn−1
o ∥ ≤ 1 and hence we have,

∥J∥ ≤ 2
n
∥X∥+ ∥((SX −XSo)− J)∥.

Letting n→ ∞ we obtain,

∥(SX −XSo)− J∥ ≥ ∥J∥. Therefore, RanδS,So ⊥ KerδS,So .

Lemma 4.29. Let S, P ∈ L(H), such that the pair (S, P ) satisfies (PF )

property, then RanδS,P ⊥ KerδS,P .

Proof. Suppose X ∈ KerδS,P , then SX −XP ∈ RanδS,P ∩KerδS,P . For

J ∈ KerδS,P , we have that the Ran(J) decreases S and Ker(J)⊥ re-

duces P and S |Ran(J) and P |Ker(J)⊥ are normal operators. Let S, P ,J

and X have the following representation in relation to the decompositions

H = H1 = R(J)⊕R(J)
⊥
, H = H2 = Ker(J)⊥ ⊕Ker(J).

S =

 S1 0

0 0

 , P =

 P1 0

0 0

 , J =

 J1 0

0 0

 andX =

 X1 0

0 0

.

From Proposition 4.8 we have,

∥(SX −XP ) + J∥ =

∥∥∥∥∥∥
 (S1X1 −X1P1) + J1 0

0 0

∥∥∥∥∥∥ .
This implies that

∥(SX −XP ) + J∥ ≥ ∥(S1X1 −X1P1) + J1∥ ≥ ∥J1∥ = ∥J∥.
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Hence, ∥δS,P (X) + J∥ ≥ ∥δS1,P1(X) + J1∥ ≥ ∥J1∥ = ∥J∥.

Therefore, RanδS,P ∩KerδS,P = 0.

Remark 4.30. Let S ∈ L(H) be quasihyponormal and T ∗ be injective

hyponormal operator, if ST = TS for some X ∈ L(H). Then S∗T = T ∗S,

RanJ reduces S, KerJ⊥ reduces T and S |Ran(J) and T |Ker(J)⊥ are

unitarily equivalent normal operators.

Theorem 4.31. Let S ∈ L(H) be quasihyponormal and T ∗ be injective

hyponormal operator in L(H), then RanδS,T ⊥ KerδS,T .

Proof. The pair (S, T ) has the PF(LH) property by Remark 4.30. Let J ∈

L(H) be such that SJ = JT . Let S, T , J and X have the following repre-

sentation in relation to the decompositions H = K = Ran(J)⊕Ran(J)
⊥
,

H = L = Ker(J)⊥ ⊕Ker(J).

S =

 S1 0

0 0

 , T =

 T1 0

0 0

 , J =

 J1 0

0 0

 andX =

 X1 0

0 0

.

where T1 and S1 are normal operators on K to L, then we have,

∥(SX −XT ) + J∥ =

∥∥∥∥∥∥
 (S1X1 −X1T1) + J1 0

0 0

∥∥∥∥∥∥ .
Thus, from Lemma 4.29 it follows that

∥(SX −XT ) + J∥ ≥ ∥(S1X1 −X1T1) + J1∥ ≥ ∥J1∥ = ∥J∥.

Hence, RanδS,T ⊥ KerδS,T .

Let E(X) = SXSo − SoXS, then we have the following theorem.
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Theorem 4.32. Let S, So ∈ L(H) be normal operators such that SSo =

SoS. Then ∥(SXSo − SoXS) + J∥p ≥ ∥J∥p, for all X ∈ Cp and for all

J ∈ KerE ∩ Cp (1 ≤ p <∞).

Proof. Taking the Hilbert space H ⊕H and considering the operators.

S =

 S1 0

0 0

 , So =

 S2 0

0 0

 , J =

 J1 0

0 0

 andX =

 X1 0

0 0

.

It follows that

∥(SXSo − SoXS) + J∥p =

∥∥∥∥∥∥
 (S1X1S2 − S2X1S1) + J1 0

0 0

∥∥∥∥∥∥
p

.

Thus, from Theorem 4.31 we have

∥(SXSo − SoXS) + J∥p ≥ ∥(S1X1S2 − S2X1S1) + J1∥p ≥ ∥J1∥p = ∥J∥p.

Hence, RanE ⊥ KerE.

Let φ(X) = SXSo − PXPo, then we have the following corollary.

Corollary 4.33. Let S, So, P, Po ∈ L(H) be normal operators such that

SP = PS and SoPo = PoSo. Then ∥(SXSo − PXPo) + J∥p ≥ ∥J∥p, for

all X ∈ Cp and for all J ∈ Kerφ ∩ Cp (1 ≤ p <∞).

Proof. On H ⊕H consider the operators S, So, P, Po, J and X defined by

S =

 S1 0

0 0

 , So =

 S2 0

0 0

 , P =

 P1 0

0 0

 , Po =

 P2 0

0 0

 ,

J =

 J1 0

0 0

 and X =

 X1 0

0 0

 .

It follows that
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∥(SXSo − PXPo) + J∥p =

∥∥∥∥∥∥
 (S1X1S2 − P1X1P2) + J1 0

0 0

∥∥∥∥∥∥
p

.

Thus, from Theorem 4.32 we have

∥(SXSo − PXPo) + J∥p ≥ ∥(S1X1S2 − P1X1P2∥p ≥ ∥J1∥p = ∥J∥p.

Hence, Ranφ ⊥ Kerφ.
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Chapter 5

CONCLUSION AND

RECOMMENDATIONS

5.1 Introduction

In this chapter, conclusions are drawn and recommendation made based

on the objectives of the study and the results obtained.

5.2 Conclusion

Results for characterization of finiteness of elementary operators has been

obtained in this study. The first objective of this study has been to char-

acterize finiteness of elementary operators. Given that an operator S on a

normed space Ω is finite if ∥(SX−XS)−I∥ ≥ 1, we investigated finiteness

of elementary operators(inner derivation, generalized derivation, basic el-

ementary operator, Jordan elementary operator) and those are operators

of the form E(X) =
∑n

i=1AiXBi. For those operators we defined their
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finiteness by E(X) = ∥
∑n

i=1AiXBi − I∥ ≥ 1. In this case we proved

that elementary operators are finite. Hence, the main results of finiteness

of elementary operators are in line with the stated objective.

In objective two, we presented some orthogonality conditions for finite

elementary operators. In this case, we proved that for the operators

S, P ∈ L(H) the range of δS,P is orthogonal to its kernel if the pair of op-

erators are normal and they commute, we extended this results to unitar-

ily invariant norms, where we showed that for the operators S, P ∈ L(H)

the range of δS,P is orthogonal to its kernel if the pair of operators sat-

isfy Putnam Fulgede Property. We also had other conditions such as, for

operators S, So ∈ F (H) the range of δS,So is orthogonal to its kernel if S

is invertible and ∥S∥∥So∥ ≤ 1. Hence, the main results of orthogonality

conditions for finite elementary operators obtained are in conformity with

the stated objective.

Finally, in objective three, we characterized Birkhoff-James orthogonal-

ity for finite elementary operators, we showed that for the inequality

∥(SX − XP ) − J∥ ≥ ∥J∥ means that the Range of δS,P is orthogonal

to the kernel of δS,P in the sense of Birkhoff. Hence, the main results of

Birkhoff-James orthogonality for finite elementary operators correspond

to the stated objective.

Therefore, the main results of finiteness of elementary operators, orthog-

onality conditions for finite elementary operators and Birkhoff-James for

finite elementary operators obtained in this study are in line with the

stated objectives.
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5.3 Recommendations

The results obtained are specific to finiteness of elementary operators, or-

thogonality conditions for finite elementary operators and Birkhoff-James

for finite elementary operators in complex normed spaces.

In the first objective, we showed that Cn(S, So) ⊂ F (H) through Remark

4.13 together with their corollaries. Hence, it is interesting to pose an

open problem that follows analogously from remark 4.13 as below.

Open problem. Is F (H) ⊂ Cn(S, So) in a general Banach space setting?

For objective two, we showed that the range of finite elementary operators

is orthogonal to its kernel if the operators satisfy Putnam Fuglede prop-

erty. Therefore, the open problem here is to find nonnormal operators

satisfying Putnam Fuglede property and consequently the range kernel

orthogonality results can be obtained.

Lastly, the results in objective three, can be extended to general Banach

space setting and Birkhoff-James orthogonality can be determined for

nonnormal operators.
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