MATH 206

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE MATHEMATICS AND COMPUTING SECOND SEMESTER 2022/2023 [JUNE - SEPTEMBER, 2022]

MATH 206: INTRODUCTION TO ANALYSIS

STREAM: Y2 S2

TIME: 2 HOURS

DAY: THURSDAY, 3.00 PM - 5.00 PM

DATE: 08/09/2022

INSTRUCTIONS:

1. Do not write anything on this question paper.

2. Answer question ONE [Compulsory] and any other TWO Questions.

QUESTION ONE

a)	Define a rational number	[2 marks]
b)	Show that between any two rational numbers there exists another rational number.	
		[4 marks]
c)	Show that $\sqrt{5}$ is not an irrational number	[5 marks]
d)	Distinguish between odd and even numbers	[2 marks]
e)	Let $m \in \mathbb{Z}$, prove that <i>m</i> is even iff m^2 is even	[5 marks]
f)	Prove that if x and y are negative numbers, then $x + y$ is also negative	[4 marks]
g)	If $\forall x \in \mathbb{R}$, show that $x < y$ iff $x^2 < y^2[5 \text{ marks}]$	
a)	Determine whether the set $S = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$ is bounded or not 3mks	

QUESTION TWO

- b) Find the supremum and infimum of the set $S = \{1 + (-1)^n : n \in \mathbb{N}\}$ [5 marks]
- c) Let S be a non-empty subset of \mathbb{R} . Prove that the real number a is the infimum of the set S if and only if the following conditions are satisfied
- i) $a \le x, \forall x \in S$ ii) $\forall \epsilon > 0, \exists x' \in S : a \le x < x' < a + \epsilon$ [6 marks]

- d) State the completeness axiom for real numbers [2 marks]
- e) Prove that if N_1 and N_2 are neighborhoods of the point x, then $N_1 \cap N_2$ is also a neighborhood of x [4 marks]
- f) Determine whether the given subset of \mathbb{R} is open or closed $S = \{(-1)^n : n \in \mathbb{N}\}$ [3 marks]

QUESTION THREE

a)	Show that the set $T = (-2, 2)$ is open	[4 marks]
b)	Prove that the finite intersection of open sets is also open	[5 marks]
c)	Show that $\lim_{x\to\infty} -6x + 3 = 15$ from first principles	[4 marks]
d)	State and prove the Darboux's integrability condition	[7marks]

QUESTION FOUR

a)	When do we say that a sequence is convergent?	[1mark]
b)	From first principle, show whether a sequence $X_n = \frac{n}{n+1}$ is convergent or not	[4 marks]
c)	Show that the limit of a convergent sequence is unique	[3 marks]
d)	Prove that every convergent sequence is bounded	[4 marks]
e)	Find the limit superior and the limit inferior of the sequence $X_n = \left\{ \cos \frac{n\pi^c}{2} + \right\}$	$\frac{1}{n}\sin\left(\frac{2n+1}{2}\right)\pi$
		[8 marks]

QUESTION FIVE

a)	Define a continuous function	[2 marks]
b)	Show that a function $f(n) = rac{n^2-1}{n^2+1}$ converges to 1 as $n o \infty$	[4 marks]
c)	Prove that if a limit of a function exists, then the limit is unique.	[3 marks]
d)	Show that the set ${\mathbb R}$ is not countable[5 marks]	

e) Show that a constant function f(x) = K on [a, b] is Riemann integrable and find its integral. [6 marks]