MATH 100

FIRST AND SECOND YEAR EXAMINATION FOR THE AWARD OF THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS SECOND AND FIRST SEMESTER 2021/2022 (FEBRUARY-JUNE, 2022)

MATH 100: GENERAL MATHEMATICS

STREAM: Y1 S2, Y2 S1

TIME: 2 HOURS

DAY: THURSDAY, 12:00 PM – 2:00 PM

DATE: 19/05/2022

INSTRUCTIONS:

- 1. Do not write anything on this question paper.
- 2. Answer Question ONE (compulsory) and any other TWO Questions.

QUESTION ONE (30 MARKS)

(a) Find the quotient when $4y^4 + 4y^3 - y^2 + 7y - 4$ is divided by $(2y - 1)$.	(4mks)
(b) The expression $y^3 + my^2 - 2y - 4$ is fully divisible by $(y + 1)$.	
(i) Find the value of m	(2mks)
(ii) Use the remainder theorem to find the remainder when the expression is divided by $(y + 2)$.	(2mks)
(c) Express as single logarithms	
$(i) 2 \log_y m - 4 \log_y m $)
(ii) $4 + 4 \log_c y$	(2mks)
(d) State the property of real numbers being applied in each of the following :	
(i) If $X = m$ and $m = Y$ then $X = Y$	(1mk)
(ii) $(x + y)z = xz + yz$	(1mk)
(iii) $4 + z = z + 4$	(1mk)
(iv) $6 \times 6^{-1} = 1$	(1mk)
(v) 8 x 6 = 6 x 8	(1mk)
(e) (i) Find the value of n if $\left(\frac{27}{2}\right)^{n+7} = \left(\frac{4}{2}\right)^{-3n}$	(3mks)
(i) Color form in the following constitute $27X + 2^{3}X^{-1} = 100$	$(2 \dots 1 \dots)$
(11) Solve for x in the following equation: $2/2 + 3^{3/2} = 108$	(3mks)
(iii) Solve for x in the equation: $16^{(2x-1)} \times 32^x = 64^{(x+1)}$	(4 mks)

QUESTION TWO (20 MARKS)

The table below shows the amount in shillings of pocket money given to students in a particular school.									
Pocket	201 - 219	220 - 229	230 - 239	240 - 249	250 - 259	260 - 269	270 - 279	280 - 289	290 - 299
money									
(Kshs)									
No. of	5	13	23	32	26	20	15	12	4
students									

Calculate the:

(a)	Calculate the mean amount of pocket money given to these students to the nearest shilling	g.(4 mks)
(b)) The median	(3 mks)
(a)	Interroughtile rough	(2 mlra)

(c) Interquartile range	(3 mks)
(d) 7 th decile	(3 mks)
(e) 60 th percentile	(3 mks)

(4 mks)

(f) Standard deviation

QUESTION THREE (20 MARKS)

(a) Letting $D = \{2, 3, 4, 5, 7, 10\}$ as the domain, find the range for each of the following functions

 $\mathbf{f}(\mathbf{x}) = 3\mathbf{x} + 2$ (i) (2 mks)

(ii)
$$g(x) = x^2 - 1$$
 (2 mks)

(b) Given that f(x) = 5x - 3 and $g(x) = \frac{1}{4}x + 1$, evaluate

(i)	(f + g)(3)	(2mks)
(ii)	2f(x) - g(2x)	(2 mks)

(a) Given f(x) = 5x + 1 and $g(x) = \frac{x}{3} - 1$, Determine $(f \circ g)(x)$ (i) (2 mks) Find $f^{-1}(x)$ and $g^{-1}(x)$ (ii) (4 mks)

(iii) Verify that
$$(f \circ g)^{-1} = (g^{-1} \circ f^{-1})$$
 (6 mks)

QUESTION FOUR (20 MARKS)

(a) Find the equations of the tangent and the normal to the curve $y = x^2 - 2x - 1$ at the point (3, 2).	(5mks)
(b)Given the function $y = 25x - 3x^3$, find the stationary points and distinguish between them.	(5mks)
(c) Find the turning points on the curve $y = x^3 - 3x + 1$. Sketch the curve.	(10mks)

QUESTION FIVE (20 MARKS)

Page 2 of 3

- (b) Differentiate from first principles $f(x) = 2x^2 + x 2$. (c) Differentiate the following using appropriate rules of differentiation (6mks)
- - $x = \sqrt[3]{y}$ (i) (3 mks) 3

(ii)
$$x = (y^2 + 3y - 5)^3$$
 (3 mks)

(iii)
$$x = (y^2 + 3y^3)(\frac{1}{3}y^4 - y^2)$$
 (4 mks)

(iv)
$$x = \frac{bx+c}{dx+e}$$
 (4 mks)