Math 112-Basic Mathematics

November 23, 2021

Instructions Answer question one and any other two questions

Question one (30marks)

- 1a. Describe each of the following sets both in words and by listing out enough elements to see the pattern.
 - i. $\{x \in \mathbb{N} : x + 3 \in \mathbb{N}\}$. (2marks)
- ii. $\{x^2 : x \in \mathbb{N}\}$. (2marks)
- b. Prove that $\sqrt{3}$ is an irrational number. (3marks)
- c. Given that $z_1 = 4 + 3i$ and $Z_2 = 2 + 3i$, find
- i. $Z_1 + Z_2$. (2marks)
- ii. $Z_1.Z_2$ (2marks)
- iii. $\frac{Z_1}{Z_2}$. (2marks)
- d. How many distinguishable arrangements are there of the word SUCCESS?.(2marks)
- e. By giving relevant examples define the following terms as used in set theory.
- i. empty set. (2marks)
- ii. universal set. (2marks)
- iii. equal sets. (2marks)

- f. Simplify $Sin^2x + Cos^2x$ (2marks)
- h. Let $A = \{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) : a divides b\}$. (3marks)
- i. If a club has **20** members, in how many different **5** member committees is possible?. **(2marks)**
- j. Find the converse, opposite and contrapositive of the implication *If my car is not in the repair shop,then i cannot go to class.* (2marks)

Question 2 (20marks)

- 2a. When is a relation *R* on a set *A* is said to be:
 - i. reflexive. (1mark)
- ii. symmetric. (1mark)
- iii. equivalence relation. (1mark)
- iv. transitive. (1mark)
- v. partial order. (1mark)
- b. Show that the function $f : \mathbb{R} \longrightarrow (1, \infty)$ and $g : (1, \infty) \longrightarrow \mathbb{R}$ defined by $f(x) = 10x^2 + 1$ and $g(x) = \frac{1}{2}log_{10}(x - 1)$ are inverses of each other. (6marks)
- c. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ and $g : \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $f(x) = x^2$ and g(x) = x + 5. Find
- i. $(g \circ f)(x)$. (2mark)
- ii. $(f \circ g)(x)$. (2mark)

Question 3 (20 marks)

- 3a. Show that $1 + sin 2x = (sin x + cos x)^2$. (3marks)
- b. Simplify
- i. $Sin^2xCos^2x + Cos^4x$. (2marks)

- ii. $\frac{1 \cos^2 x \sin x}{2\sin^2 x + \sin x 3}$. (3marks)
- b. Solve the following trigometric equations
- i $12\cos^2 x + \sin x = 11$ on the domain $0^\circ \leq x \geq 360^\circ$. (3marks)
- ii. $sin^2x cos^2x = -\frac{1}{2}$ for $0^\circ \le x \ge 360^\circ$. (3marks)
- c. Express each of the following as a sum or difference
- i. Sin $40^{\circ} \cos 30^{\circ}$. (2marks)
- ii. $cos110^{\circ} sin55^{\circ}$. (2marks)
- d. Find an equivalent expression for $Sin3\theta$ interms of θ . (2marks)

Question 4 (20marks)

- a. Distinguish between permutations and combinations. (2marks)
- b. How many committees of 5 people can be chosen from 20 men and 12 women
- i. If exactly 3men must be on each committees. (2marks)
- ii. If atleast 4 women must be on each committes. (2marks)
- c.i State Binomial theorem. (2marks)
- ii. Use binomial theorem to prove that

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots \binom{n}{n} = 2^n$$

. (3marks)

- d. Use venn diagram to prove that $A B = A \cap B^c$. (2marks)
- e. List all the subset of the set $S = \{a, b, c\}$. (2marks)
- f. Let $A = \{1, 2, 3, 4, 5, 6\}$, $B = \{2, 4, 6\}$ and $\{1, 2, 3\}$. If the universal set $U = \{1, 2, 3, 4 \cdots 10, \}$ find
- i $A \cup B$. (2marks)
- ii $\overline{B \cup C}$. (2marks)
- iii. $\phi \cap C$. (2marks)

Question 5(20marks)

- 4a. Indicate whether each of the following statements is a proposition or not. State state the truth values for the propositions.
 - i. When will you come to Kenya?. (1mark)
- ii. Naivasha is a county in Kenya. (1mark)
- iii. Tomorrow is my birthday. (1mark)
- iv. 51 is a prime number. (1mark)
- b.i Differentiate between tautology and contradiction. (2marks)
- ii. Show that $P \lor \sim P$ is a tautology and $P \land \sim P$ is a contradiction. (4marks)
- c. Construct truth table for the following logic connectives:
- i. $P \wedge Q$. (2marks)
- ii. $P \Rightarrow Q$. (2marks)
- iii. $P \Leftrightarrow Q$. (2marks)
- c. Prove by Mathematical induction that $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ for all $n \ge 1$. (4marks)