MATH 190

SECOND YEAR EXAMINATION FOR THE AWARD OF THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS

SECOND SEMESTER 2021/2022 (FEBRUARY-JUNE, 2022)

MATH 190: ENGINEERING MATHEMATICS

STREAM: Y2 S2

DATE: 00/05/2022

TIME: 2 HOURS

DAY:

INSTRUCTIONS:

1. Do not write anything on this question paper. Answer Question ONE (Compulsory) and any other TWO Questions.

QUESTION ONE

a) Use Maclaurin's series to develop a power series approximation up to the term in x^7 of the function:

$$f(x) = \ln\left(\frac{x+2}{2-x}\right)$$

(3 marks)

(4 marks)

b)The gamma function is given by the integral

$$\Gamma(x) = \int_0^\infty (t^{x-1} e^{-t}) dt, \ x > 0.$$

Show that $\Gamma(x + 3) = (x + 2)(x + 1)x\Gamma(x)$

- c) Use De Movre's theorem to evaluate z^8 where $z = -2 + i\sqrt{7}$. (3 marks)
 - e) A d.c circuit comprises of three loops. Applying Kirchoff's laws to the

closed loops gives the following equations for current flow:

$$3I_1 + 3I_2 - 4I_3 = 26$$

$$2I_1 - 5I_2 - 3I_3 = -54$$

$$-7I_1 + 2I_2 + 6I_3 = 26$$

Use Gaussian elimination method to solve for I_1 , I_2 and I_2 . (5 marks) **f**) If $\vec{p} = 2i + j - 3k$ and $\vec{q} = 4i - 3j + 2k$, determine:

(i) \vec{q} . \vec{p} (2 marks) (ii) \vec{q} x \vec{p} (3 marks)

(3 marks)

g) Find the Laplace transform of the function f(t) = t.

h)Given the partial differential equation, $f(x) = 4\sin(3x)\cos(2t)$ evaluate $\frac{\partial^2 f(x)}{\partial x^2}$ and $\frac{\partial f(x)}{\partial t}$. (4 marks)

i) Show that the function $f(x) = x - x^3$ in the interval $-\pi \le x \le \pi$ is an even function. (3 marks)

QUESTION TWO

a) Find the Fourier series representing the function, $f(x) = x + x^2$, for

$$-\pi < x < \pi \,. \tag{5 marks}$$

b)Evaluate the triple integral $\iint_{1}^{2} 4(x^{3} - x^{-2})dx$ (5 marks)

c)The velocity v of point P on a body with angular velocity ω about a fixed axis is given by

 $\vec{v} = \vec{\omega} \times \vec{r}$

Where *r* is point on vector P. Find \vec{v} given that at point P, $\vec{\omega} = 2i - 5j + 7k$ and $\vec{r} = j + 3k$, where *i*, *j*, *k* are unit vectors. (4 marks)

d)Given $\vec{p} = 3i + 2k$, $\vec{q} = 4i - 2j + 3k$ and $\vec{r} = 3i + 5j - 4k$, determine: (i) $-\vec{p} + 2|\vec{r}|$ (2 marks) (ii) $(\vec{q} - 2\vec{p}) \cdot \vec{r}$ (2 marks) (iii) $(\vec{r} + \vec{p}) \times \vec{q}$ (2 marks)

QUESTION THREE

- **a)** Given the following function, find y'''. $y(x) = \frac{1}{3}e^{-\frac{1}{2}x}$ (5 marks)
- **b)** Find y''' if $y = \log(ax + b)$ (5 marks)

c) Given $z_1 = 2 + 4i$ and $z_2 = 3 - i$, determine $|z_1 + z_2|^2$ where z_1, z_2

are complex numbers.

f(x) = x in the interval $-\pi < x < \pi$.

d) Find the eigen values that satisfy the following matrix equation

e) Use integration by parts to evaluate the integral:

b)Using the method of integration by parts evaluate the integral:

(3 marks)

c)Given
$$A = \begin{pmatrix} 3 & 4 & 0 \\ -2 & 6 & -3 \\ 7 & -4 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & -5 \\ 5 & -6 \\ -1 & -7 \end{pmatrix}$, find $A \times B$ (4 marks)

d)Find the eigen values λ that satisfy the following equation

 $\begin{vmatrix} (5-\lambda) & 7 & -5 \\ 0 & 4-\lambda & -1 \\ 2 & 8 & 2 \\ \end{vmatrix} = 0$

 $\int (x\cos x) \, dx$

(5 marks)

e) The tensions T_1, T_2 , and T_3 in a simple framework are given by the following equations:

$$5F_1 + 5F_2 + 5F_3 = 7.0$$

$$F_1 + 2F_2 + 4F_3 = 2.4$$

$$4F_1 + 2F_2 = 4.0$$

Use Gaussian elimination to find the values of T_1 , T_2 , and T_3 . (5 marks)

QUESTION FIVE

a)Find Legendre polynomials P_1, P_2 and P_3 using Rodrigues formalism.

(3 marks)

b)Given that z is a complex number, determine z^6 if

z = ln(2 + 5i)

Page 3 of 4

QUESTION FOUR a)Find the constant term a_0 and a_1 of the Fourier series for the function

(3 marks)

 $\begin{vmatrix} (1-\lambda) & 4 \\ -1 & (2-\lambda) \end{vmatrix} = 0$

 $\int x^2 (\ln x) \ dx$

(3 marks)

(3 marks)

(4 marks)

(4 marks)

c)The reagents used in the preparation of a solution are R_1, R_2 , and R_3 . Their mixtures are prepared by the following simultaneous equations:

$$\begin{array}{l} 0.7R_1 + 0.8R_2 + 1.8R_3 = 5.6\\ 0.2R_1 - 1.4R_2 + 1.6R_3 = 35.0\\ 0.4R_1 - 2R_2 - 1.3R_3 = -5.6 \end{array}$$

Find the values of R_1, R_2 , and R_3 using determinants. (4 marks) **d)** Resolve the following into partial fractions then evaluate the integral

$$\int_{2}^{3} \frac{x^3 - 2x^2 - 4x - 4}{x^2 + x - 2} dx$$

(5 marks)

e) If $u(x,y) = (\frac{x}{y}) ln y$, Show that $\frac{\partial u}{\partial y} = x \frac{\partial^2 u}{\partial y \partial x}$, and evaluate $\frac{\partial^2 u}{\partial y^2}$ when x = -2and y = 2 (4 marks)