MATH 210

MATH 210: LINEAR ALGEBRA I

STREAM: Y2 S1

TIME: 2 HOURS

DAY: TUESDAY, 9:00 AM - 11:00 AM

DATE: 10/05/2022

INSTRUCTIONS:

1. Do not write anything on this question paper.

2. Answer Question ONE (Compulsory) and any other TWO Questions

QUESTION ONE (30 MARKS)

a. Consider the following systems of linear equation:

(3 marks)

2x + 4y = 8 4x - 2y = 66x + 2y = 2k

Find the value of k for which the system is consistent

b. Use Gauss-Jordan Elimination method to solve the following systems of linear equations.

(6 marks)

 $3x_1 + 3x_2 + 6x_3 = 24$ $3x_1 + 6x_2 - 9x_3 = -3$ $9x_1 - 21x_2 + 12x_3 = 30$

c. Find the values of λ for which the determinant of the matrix below is equal to zero. (5 marks)

ſ	$\lambda + 1$	0	0]
	4	λ	3
L	2	8	$\lambda + 5$

d. Let

$$A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & -3 & 10 \\ 0 & 1 & -3 \end{bmatrix}$$
-1 (8 marks)

Find the ad joint of A and hence find A^{-1}

e.	i.) State the Cramer's rule	(2 marks)
	ii.) Use Gaussian elimination to solve the following systems of linear equations.	(6 marks)
	$x_1 + 2x_2 + 3x_3 = 9$	
	$-x_1 + 3x_2 = -4$	
	$2x_1 - 5x_2 + 5x_3 = 17$	

QUESTION TWO (20 MARKS)

- a. i.) Define the term symmetric matrix. (1 mark)
 - ii.) Prove that a symmetric matrix of order 2 is diagonalizable. (4 marks)
 - iii.) State the Cayley Hamilton's theorem and use it to verify for the matrix. (4 marks)

$$A = \begin{bmatrix} 1 & -3 \\ 2 & 5 \end{bmatrix}$$

- b. Show that the determinant of a second order matrix with identical rows is zero. (2 marks)
- c. Consider the matrices $A = \begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -4 \\ 4 & -1 \end{bmatrix}$ determine whether these matrices commute and hence find the commutator. (4 marks)
- d. Use Cramer's rule to find the point of intersection of the three planes defined by: (5 marks)

$$x + 2y - z = 4$$

$$2x - 2y + 3z = 3$$

$$4x + 3y - 2z = 5$$

QUESTION THREE (20 MARKS)

- a. Apply the Gram-Schmidt process to construct an orthogonal basis set for (7 marks) $B = \{(1,1,0), (1,2,0), (0,1,2)\} of \mathbb{R}^{3}$
- b. Show that the transformation T(x) = 2x + 1 is not a linear transformation. (3 marks)
- c. Find the Eigen values of the matrix $A = \begin{bmatrix} 5 & 2 \\ 9 & 2 \end{bmatrix}$ (5 marks)
- d. Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ Determine whether or not A is diagnosable. (5 marks)

QUESTION FOUR (20 MARKS)

- a. Calculate the area of the triangle whose vertices are A(1,0), B(2,2) and C(4,3) by use of the method of determinants. (4 marks)
- b. Consider the vectors u = (1, -3, 7) and v = (8, -2, -2) Find u, v and the angle between them

(5mks)

- c. i.) Let $V = \mathbb{R}^3$ with standard operations and $S = \{(1,2,3), (0,1,2), (-2,0,1)\} \le \mathbb{R}^3$ Does *SS*pan *V*?
 - ii.) Let $V = \mathbb{R}^3$ and $S = \{(-4, -3, 4), (1, -2, 3), (6, 0, 0)\}$ determine whether S is linearly independent (4 marks)
- d. Find the rank of the matrix below

$$A \begin{bmatrix} 1 & -2 & 3 \\ 2 & -5 & 1 \\ 1 & -4 & -7 \end{bmatrix}$$

(4 marks)

QUESTION FIVE (20 MARKS)

- a. i.) Define the term Basis of a vector space V (2 marks)
 - ii.) Let $S = \{V_1 = (1,2,1), V_2 = (2,9,0), and V_3 = (3,3,4)\}$ (3 marks) Show that the set S is basis for \mathbb{R}^3
- b. Show that $\langle u, v \rangle = u_1v_1 2u_2v_2$ where $u = (u_1u_2) v = (v_1v_2)$ is an inner product on \mathbb{R}^2 (5mks)
- c. i.) Define the term Linear transformation. (1 mark) ii.) Show that $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_2 - x_1 \end{bmatrix}$ is a linear transformation (6 marks)