

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF THE DEGREE OF BACHELOR OF SCIENCE, EDUCATION AND

BACHELOR OF SCIENCE ARTS FIRST SEMESTER 2021/2022 (FEBRUARY-JUNE, 2022)

MATH 211: CALCULUS II

STREAM: Y2 S1 TIME: 2 HOURS

DAY: THURSDAY, 9:00 AM - 11:00 AM DATE: 05/05/2022

INSTRUCTIONS:

1. Do not write anything on this question paper.

2. Answer ALL Questions in section A (Compulsory) and any other TWO Ouestions in section B.

SECTION A (30 MARKS)

1.

a. Integrate
$$\int_{2}^{5} x lnx dx$$
 (5 marks)

b. Use integration by substitution to solve
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{1-y^2}} dy$$
 (5 marks)

- c. Use integration by partial fractions to solve $\int \frac{2x^3 4x^2 x 3}{x^2 2x 3} dx$ (5 marks)
- d. Use integration by parts to solve $\int_0^{\pi} [x^3 \cos x] dx$ (5 marks)
- e. Find the Taylor series for the function $f(x) = \frac{x}{(x+5)}$ at x = 2. (5 marks)
- f. The electrostatic potential on all parts of a conducting circular disc of radius r is given by the equation: $v = 2\pi\sigma \int_0^6 \frac{R}{\sqrt{R^2 + r^2}} dR$. Solve the equation by determining the integral. (5 marks)

SECTION B (40 MARKS)

2.

a. Find
$$\int_0^e \frac{\sqrt{1+lnx}}{x} dx$$
 (5 marks)

(5 marks)

- b. Find the area between the x axis, the curve $y = \frac{1}{x}$ and the lines $x = -e^3$ and $y = -e^3$. (5 marks)
- c. Determine all the numbers c which satisfy the conclusions of the Mean Value Theorem for the function $h(z) = z^3 2z^2 z$ on [-1, 2] (5 marks)

3.

a. Let P(t) denote the population of bacteria in a certain colony at time t. Suppose that P(0) = 100 and that P is increasing at a rate of $20e^{3t}$ bacteria per day at time t. How many bacteria are there after 50 days?

(5 marks)

- b. Evaluate $\int_0^1 \sin^3 x \cos x dx$ (5 marks)
- c. Integrate $\int \left\{ \frac{1}{x} + \sin\left(\frac{1}{4}x\right) + \sqrt{4x} e^{-3x} \frac{6x}{3x^2 5} \right\} dx$ (10 marks)

4.

a.
$$\lim_{x \to 0} \frac{\tan 3x}{\tan 2x}$$
 (5 marks)

b. Solve
$$\int_0^{\frac{\pi}{2}} \cos 3x \sin 2x dx$$
 (5 marks)

- c. State Rolle's Theorem, hence verify that the function $f(x) = 2x^2 8x + 6$ satisfies the conditions of (5 marks)
- d. Integrate $\int_0^1 \frac{dt}{t^2 6t + 10}$ (5 marks)

5.

a. Differentiate giving examples between definite and indefinite integration.

(5 marks)

- b. Find the area between the graphs of cosx and sinx on $\left[0, \frac{\pi}{4}\right]$ (5 marks)
- c. Evaluate $\int_{-\pi}^{0} \sin^4 x \cos^3 x \, x \, dx$ (5 marks)
- d. $\int \frac{x}{1+x^4} dx$ (5 marks)