

UNIVERSITY EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE AWARD OF
THE DEGREE OF BACHELOR OF SCIENCE MATHEMATICS
SECOND SEMESTER 2021/2022
(FEBRUARY-JUNE, 2022)

MATH 220: VECTOR ANALYSIS

STREAM: Y2 S2 TIME: 2 HOURS

DAY: FRIDAY, 12:00 PM - 2:00 PM DATE: 13/05/2022

INSTRUCTIONS:

1. Do not write anything on this question paper.

2. Answer Question ONE (Compulsory) and any other TWO Questions.

QUESTION ONE (COMPULSORY) 30MKS

- a) Show that $\frac{d}{dt}(\mathbf{F} \times \mathbf{G}) = \mathbf{F} \times \frac{d\mathbf{G}}{dt} + \frac{d\mathbf{F}}{dt} \times \mathbf{G}$ (3 marks)
- b) Determine the curl of vector $\vec{\mathbf{F}}$ at the point (2, 0, 3) given that $\vec{\mathbf{F}} = \mathbf{i}\mathbf{z}e^{\mathbf{x}\mathbf{y}} + \mathbf{j}2\mathbf{x}\mathbf{z}\cos\mathbf{y} + (\mathbf{x} + 2\mathbf{y})\mathbf{k}$. (4 marks)
- c) Find the scalar triple product of $2\mathbf{i} + \mathbf{k}, \mathbf{j} 3\mathbf{k}, \mathbf{j} + 2\mathbf{i}$ (3 marks)
- d) Show that $V = (x + 3y)\mathbf{i} + (y 3z)\mathbf{j} + z\mathbf{k}$ is solenoidal (3 marks)
- e) If $\vec{A} = x^2z\mathbf{i} + xy\mathbf{j} + y^2z\mathbf{k}$ and $\vec{B} = yz^2\mathbf{i} + xz\mathbf{j} + x^2z\mathbf{k}$. Determine the expression for grad $(\vec{A}.\vec{B})$ at (1,1,1) (4 marks)
- f) A particle moves in space so that at time t its position is stated as $x = 2t^2$, $y = 2t^2 4t$, z = 3t 5. Find the component of velocity in the direction $\mathbf{i} 3\mathbf{j} + 2\mathbf{k}$ (4 marks)
- g) If If $\vec{F} = x^2y^2\mathbf{i} + y^3z\mathbf{j} + z^2\mathbf{k}$. Evaluate $\int_c^{\square} \vec{F}$. dr along the curve $x = 2u^2$, y = 3u and $z = u^3$ between A(2, -3, -1) and B(2, 3, 1) (5 marks)
- h) Find the directional derivative of $\emptyset = z^3y + y^2x$ at the point (1,-1,1) in the direction of the vector $\mathbf{a} = 3\mathbf{i} + \mathbf{j} \mathbf{k}$ (4 marks)

QUESTION TWO (20 MARKS)

- a) If $\vec{F} = 2z\mathbf{i} x\mathbf{j} + y\mathbf{k}$, evaluate $\iiint_{V} \vec{F} dv$ where V is the region bounded by the surfaces $x = 0, x = 2, y = 0, y = 4, z = x^{2}, z = 2$. (6 marks)
- b) Use divergence theorem to evaluate the $\iint \vec{F} \cdot \hat{n}$ ds where $\vec{F} = (3x 2z)\mathbf{i} (2x + y)\mathbf{j} + (y^2 + 2z)\mathbf{k}$ and S is the surface of the sphere with centre at (1,2,4) radius 4 units

(8 marks)

c) Prove that $(y^2 - z^2 + 3yz - 2x)\mathbf{i} + (3xz + 2xy)\mathbf{j} + (3xy - 2xz + 2z)\mathbf{k}$ is both solenoidal and irrotational. (6 marks)

QUESTION THREE (20 MARKS)

- a) A fluid motion is given by $\vec{v} = (y + z)\mathbf{i} + (z + x)\mathbf{j} + (x + y)\mathbf{k}$. Show that the motion is irrotational and hence find the velocity potential. (8 marks)
- b) If $\vec{A} = t^2 \mathbf{i} t \mathbf{j} + (2t+1)\mathbf{k}$ and $\vec{B} = (2t-3)\mathbf{i} + \mathbf{j} t\mathbf{k}$. Find $\frac{\partial}{\partial t} (\vec{A} \times \vec{B})$ at t = 1 (6 marks)
- c) Given that $u = x^2 + y^2 + z^2$ and $\vec{r} = xi + yj + zk$ find div ur (6 marks)

QUESTION FOUR (20 MARKS)

- a) The acceleration of a particle at any time $t \ge 0$ is given by $\vec{a} = e^{-t}\mathbf{i} 6(t+1)\mathbf{j} + 3\sin(t)\mathbf{k}$. If the velocity \vec{v} and displacement \vec{r} are zero at t = 0. Find \vec{v} and \vec{r} at any time. (9 marks)
- b) If a force $\vec{F} = 2x^2y\mathbf{i} + 3xy\mathbf{j}$ displaces a aparticle in the x-y plane from (0,0) to (1,4) along a curve $y = x^2$. Find the work done. (6 marks)
- c) A scalar function φ is given as $\varphi = \frac{\vec{r}}{|r|^3}$ where $\vec{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Find $\nabla \varphi$ (5 marks)

QUESTION FIVE (20 MARKS)

- a) i) state stokes theorem (2 marks)
- ii) Use stock's theorem to evaluate $\int [(2x y)dx (yz^2)dy (y^2z)dz]$ where S is the upper half of the sphere $x^2 + y^2 + z^2 = 1$ and C is boundary of the sphere. (6 marks)
- b) Use green's theorem to compute $\oint_c^{||\cdot||} xy \, dx + xy \, dy$ over a counterclockwise rectangle with corners at (1, 0), (3, 0), (3, 2) and (1, 2). (6 marks)
- c) If $\vec{\mathbf{F}} = (\mathbf{x}^2 \mathbf{y})\mathbf{i} + 2\mathbf{y}\mathbf{z}\mathbf{j} + 3\mathbf{x}\mathbf{z}^2\mathbf{k}$. Evaluate $\int_c^{\square} \vec{\mathbf{F}} \cdot d\mathbf{r}$ from (0,0,0) to (1,2,3) along the path given by $\mathbf{x} = \mathbf{t}$, $\mathbf{y} = 2\mathbf{t}$ and $\mathbf{z} = 3\mathbf{t}$ (6 marks)