

KISII UNIVERSITY MAIN CAMPUS UNIVERSITY EXAMINATIONS FIRST YEAR EXAMINATIONS FOR THE DEGREE OF MASTERS OF MATHEMATICAL STATISTICS SECOND SEMESTER 2022/2023 (JANUARY-APRIL 2023)

MATH 876: NONPARAMETRIC INFERENCE

STREAM: MSc Y1S2 DAY: TIME: 2 HOURS DATE:

INSTRUCTIONS:

- 1. Do not write anything on this question paper.
- 2. Answer question **ONE** and any other **TWO** questions.

Question One (Compulsory) (30 Marks)

(a) Explain clearly the following concepts of nonparametric inference.

(a)	Order statistics.	(5 marks)
(b)) Distribution free statistics.	(4 marks)

- (b) Let X_1, \dots, X_n be iid absolutely continuous random variables with distribution function
 - F(x) and $X_{(1)} < \cdots < X_{(n)}$ their order statistic. Derive
 - (i) The joint density function of the order statistics of X_1, \dots, X_n . (5 marks)
 - (ii) The probability density function of the i^{th} order statistics. (4 marks)
- (c) Carefully state and prove the probability integral transformation (PIT) and briefly explain its importance in nonparametric inference.
 (7 marks)
- (d) Find the quantile function, Q(p) for a random variable X from the exponential distribution with $\beta = 2$ and CDF (5 marks)

$$F(x) = \begin{cases} 0, & x < 0\\ 1 - e^{-\frac{x}{2}}, & x \ge 0 \end{cases}$$

Question Two (20 Marks)

- (a) With the aid of some real life examples, explain the circumstance(s) under which the chi-square goodness of fit(GoF) test may be used and suggest alternative tests to the chi-square GoF test
 (3 marks)
- (b) Show that the chi-square GoF test is a consistent test and hence, also that it is asymptotically unbiased.

Question Three (20 Marks)

- (a) Write the k-sample median test statistic, where the null hypothesis is that $k(\geq 2)$ populations are identical against the general alternative that the populations are different in some way.
- (b) For the arbitrary data below, use the median test to test whether there exist any difference between the three groups

Group	1	2	3
	73	96	12
	79	92	26
	86	89	33
	91	95	8
	35	76	78

Question Four (20 Marks)

- (a) Distinguish between cumulative distribution function F(x) and the empirical distribution function $S_n(x)$.
- (b) The Kolmogorov-Smirnov statistics are defined as

$$D_n =_{x \in \Re}^{sup} \left[S_n(x) - F(x) \right], \quad D_n^- =_{x \in \Re}^{sup} \left[F(x) - S_n(x) \right], \quad D_n^+ =_{x \in \Re}^{sup} \left[S_n(x) - F(x) \right]$$

where F(x) is a continuous cumulative distribution function and $S_n(x)$ is the empirical distribution function.

- (i) Prove that the statistics D_n , D_n^- and D_n^+ are completely distribution free.
- (ii) Explain the advantage of the the three statistics being distribution free.

Question Five (20 Marks)

Let X_1, \dots, X_n and Y_1, \dots, Y_m denote iid real-valued random variables with continuous distribution functions F(x) and $G(x) = F(x - \Delta)$, respectively, where $\Delta \in \Re$ is an unknown shift parameter. Let $R^* = (Q_1, \dots, Q_m, R_1, \dots, R_n)$ denote the vector of ranks for $(X_1, \cdots, X_m, Y_1 \cdots, Y_n)$. Then

$$W = \sum_{n=1}^{i=1} R_i \quad U = \sum_{i=1}^{m} \sum_{j=1}^{n} \Psi(Y_j - X_i)$$

are called the Wilcoxon and the Mann-Whitney rank sum statistics, respectively. Under the null hypothesis $H_0: \triangle = 0$, W is a rank statistic. Show that $W = U + \frac{n(n+1)}{2}$ implying that under $H_0: \triangle = 0$, U is a rank statistic too.