UNIVERSITY EXAMINATIONS

2022 - 2023 ACADEMIC YEAR SEMESTER TWO,

JANUARY-APRIL 2023

COURSE CODE: MATH 111

COURSE TITLE: CALCULUS 1

INSTRUCTIONS TO CANDIDATES

Answer question one (compulsory) and any other two questions

Time: 2 hours

QUESTION ONE (30 MARKS)

(a) (i)State three conditions for a function f(x) to be continuous at the point x = a (3mks)

(ii) Determine the continuity of the function $f(x) = f(x) = \begin{cases} x^2 + 2x, \ x < -2 \\ x^3 - 4x, \ x \ge -2 \end{cases}$ at x = -2 (6mks)

(b) (i) Determine the equations of both the tangent line and normal line to the curve $y = 3x^2 - x + 1$ at the point where x = 1 (4mks)

(ii) Differentiate
$$y^3 + \sin y = 0$$
 with respect to x. (2mks)

(c) Evaluate the following:

(i)
$$\lim_{x \to 2} \frac{x-2}{4-x^2}$$
 (2mks)

(ii)
$$\lim_{x \to \infty} \left(\frac{x^2 + 2x - 3}{x^2 - x} \right)$$
 (3mks)

(d) If
$$x = \cos t$$
 and $y = 1 - \sin 2t$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ (4mks)

(e) Determine the continuity of
$$f(x) = \frac{1}{x}$$
 over the interval $(0,\infty)$ (3mks)

(f) Find
$$\frac{dy}{dx}$$
 if $y = e^{3x}(\sin 2x)$ (3mks)

QUESTION TWO (20 MARKS)

(a) At what point does $y = 3x^2 - 12x^2 + 45x - 55$ have an horizontal tangent (3mks)

- (b) Differentiate the implicit function; $x^2 + 2y^3$ (3mks)
- (c) Use the appropriate method of differentiation to differentiate the following

(i)
$$\frac{2\cos x}{\sin x}$$
 (4mks)

(ii)
$$y = \frac{x^2 + 5x - 4}{2x + 1}$$
 (3mks)

(iii)
$$y = \cos(6x^3)$$
 (3mks)

(d) Verify the mean value theorem for $f(x) = x^3 - 3x^2 - 10x + 20$ on the interval [-1,5]

(4mks)

(3mks)

QUESTION THREE (20 MARKS)

(a) Use Newton's method to find $\sqrt{17}$

(b) Given $5y^2 - 3x^2 - x + y = 0$, find $\frac{dy}{dx}$. Hence find the equation of the tangent and equation of the normal to the curve of $5y^2 - 3x^2 - x + y = 0$ at the point (1, -1). (6mks)

(c) Differentiate the implicit function:

$$x^3 + 2x^2 y^2 + x^2 = 4 \tag{4mks}$$

(d) Differentiate the following functions;

(i)
$$x^5 \cos x$$
 (ii) $\sin x^2$ (5mks)

(e) Differentiate $y^3 + \sin y = 0$ with respect to x. (2mks)

QUESTION FOUR (20 MARKS)

- (a) Find the equation of the tangent to $y = (x + 3)^{\frac{2}{3}}$ at the point (5,4) (4mks)
- (b) Differentiate the following using appropriate methods.

(i) $(x^3 - 2) (\sin x + \cos x)$ (4mks)

(ii)
$$\frac{\tan x + 1}{\cos x}$$
 (5mks)

(iii)
$$x^2 + y^2 = \sqrt{7}$$
 (3mks)

(c) Find the dimensions of the rectangle that has maximum area if its perimeter is 20*m*.Comment on the outcome. (4mks)

QUESTION FIVE (20 MARKS)

(a) Define a parametric function. Hence find $\frac{dy}{dx}$ given $y = t^2 + 3$ and $x = t^2 + 5t + 9$ (3mks)

(b) Given that
$$P = 3q^4 - 4q^2 + 3$$
; find: $\frac{d^3p}{dq^3}$ (3mks)

(c) (i) At what point does the tangent to the function $y = x^3 + 2x^2$ have a slope of zero. (4mks)

(ii) Differentiate;
$$y^3 + \sin x = 3$$
(4mks)(iii) Differentiate: $f(x) = e^{\sin x}$ (2mks)

(d) Let $f(x) = x^3 + 1$. Show that f satisfies the hypothesis of Mean value theorem on the interval [1,2] and find all values of c in this interval whose existence is guaranteed by the theorem. (4mks)

(e) Find from the first principles, the derivative of the function f(x) = sinx (4mks)