KISII UNIVERSITY EXAMINATIONS FIRST YEAR EXAMINATION FOR THE AWARD OF THE DEGREE OF BACHELOR OF SCIENCE IN EDUCATION SECOND SEMESTER 2022/2023 [JANUARY-APRIL, 2023]

MATH 113: VECTORS AND MECHANICS

STREAM: Y1S2

TIME: 2 HOURS

DATE: 30/03/2023

DAY: THURSDAY, 9:00 – 11:00 AM INSTRUCTIONS

1. Do not write anything on this question paper.

2. Answer question ONE and any other TWO questions.

QUESTION ONE (COMPULSORY) (30 MARKS)

a)	Find the unit vector in the direction of the vector $\mathbf{A} = 2\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$	(3marks)	
b)	A body is projected vertically upwards with an initial velocity of $270m/s$. Find:		
	i) Time taken to reach maximum height.	(2marks)	
	ii) The maximum height reached.	(2marks)	
	iii) The time of flight.	(2marks)	
c)	Two masses $335kg$ and $21kg$ are connected to a fine string which passes over a smooth		
	pulley fixed at the end of an inched plane which is 17 metres long and 15 metres high.		
	The heavier particle rests on the plane and the lighter particle hangs on the pulley. Find		
	the acceleration of the masses and the tension in the string.	(5marks)	
d)) The sides of a square lamina A, B, C, D are each 4 metres long. Along		
	AB, CB, CD, DA and BD act as forces of magnitude 2, 5, 7, 9 and 12 N respectively.		
	Find the algebraic sum of their moments about:		
	i) Point A	(3marks)	
	ii) The center of the square.	(2marks)	
e)	Explain briefly the general principle of moments.	(3marks)	
f)	A body of mass $28kg$ is held on a smooth slope at 2.5 to the horizontal. Find the		
	acceleration of the body when it is released and the normal reaction to the body.		
		(5marks)	
g)	Show that the points $P(4, 6)$, $Q(-12, 10)$ and $R(12, 4)$ are collinear	(3marks)	

QUESTION TWO

(20MARKS)

- a) Derive the third equation of motion under constant acceleration. (4marks)
- b) A body has an initial velocity of 360m/s and is subjected to an acceleration of -40m/s/s. Find its velocity after 2.5 *seconds*. (3marks)
- c) A non-uniform ladder 10*metres* long and 20*kg* mass rests with the end *A* against a smooth vertical wall and the other end *B* on a smooth ground 6*metres* from the wall. It is maintained in this position by a horizontal cord attached at *B*. If the centre of gravity is 5*metres* from *B*; find:

 i)Normal reaction at *A* (3marks)

	i)Normal reaction at A	(3marks)
	ii)Tension in the cord	(1mark)
	iii)Normal reaction at B	(2marks)
d)	The distance x metres moved by a body after t seconds is g	iven by $x = 4t^2 + 16t + 12$
	metres. Find its velocity and acceleration after 3 seconds.	(3marks)
e)	If $A = 6i - 2j + 7k$ and $B = -8i - 5j + 12k$. Find:	
	i)The magnitude of $A + B$	(2marks)
	······································	

ii)The angle between the vectors **A** and **B**. (2marks)

QUESTION THREE (20MARKS)

Show that the vectors whose position vectors are a, 2b - 3a and b - a are collinear; where a and b are non-collinear vectors. (3marks)

- a) The mass of a vehicle is 3500kg. The combined frictional and resistance is 1800N. Find the driving force of the vehicle, if it is traveling on a level surface with acceleration of 64.5m/s/s. (3marks)
- b) Find the displacement and velocity of a particle after 3 *seconds* whose initial velocity is $\binom{4}{6}m/s$ if it had a constant acceleration of $\binom{2}{-9}m/s/s$. (3marks)
- c) A particle moving in a straight line has an acceleration of (4t 18) m/s/s after t seconds. If its velocity at t = 0 is 36m/s. Find the value of t for which it is stationary. (5marks)
- d) Four vectors of magnitude 4, $3\sqrt{2}$, 9 and 12 units inclined at angles of 45^{0} , 60^{0} , 75^{0} , and 150^{0} to the x-axis. Find the magnitude and direction of the resultant vector *R*. (4marks)
- e) A vector \overrightarrow{OP} has a magnitude of 4 units in the direction of 82.5⁰. Find its resolution along the *x* and *y* axis respectively. (2marks)

QUESTION FOUR (20MARKS)

a) Given the vectors $\mathbf{A} = 3i - 2j - 8k$ and $\mathbf{B} = 5i + 3j + 7k$, find: i) $\mathbf{A} \times \mathbf{B}$ ii) $\mathbf{B} \times \mathbf{A}$ (4marks)

i) $A \times B$ ii) $B \times A$ (4marks) b) Forces of magnitude 6, 9 and 8N act along the sides *AB*, *BC* and *CA* of an equilateral triangle. Find the magnitude and direction of the resultant with *AB* along the *x* – *axis*. (5marks)

c) A body of mass 15kg is allowed to slide down a rough surface inclined at 40^{0} to the horizontal against a frictional force of 20*N*. Find:

i) the n	ormal reaction R	(2marks)
ii) the c	o-efficient of friction	(2marks)
iii)	The acceleration of the body	(2mks)

d) A body of mass 8kg is placed on a smooth surface and is connected by a string over a smooth pulley to a mass of 12kg hanging freely. The system is released. Find the acceleration of the system and the tension on the string. (5marks)

QUESTION FIVE (20MARKS)

- a) A particle of weights 3, 5, 8 and 10N are placed at the vertices of a rectangular frame A, B, C and D respectively. If AB = 4cm and BC = 8cm, find the position of the centre of gravity relative to the point A. (5marks)
- b) If A = -3i + 2j + k, B = -i + 2j + k and C = 2i + j + 3k, find: i) $A \cdot B = ii$ $A \times C = iii$ $A \cdot (B \times C)$ (6marks)

c) Show that the area of a parallelogram is given by $|A \times B|$. Hence, find the area of a parallelogram with sides A = 3i + j - 2k, B = i - 3j + 4k. (5marks)

d) The path of a particle after t seconds is given by $r = 3ti + (2.5t - t^3)j$. Find its velocity and acceleration after 2.5 seconds. (4marks)