

FIRST YEAR EXAMINATION FOR THE AWARD OF THE DEGREE OF BACHELOR OF SCIENCE IN EDUCATION SECOND SEMESTER 2022/2023 [JANUARY-APRIL, 2023]

MATH 114: GEOMETRY AND LINEAR ALGEBRA

STREAM: Y1S2

TIME: 2 HOURS

DAY: MONDAY, 12:00 - 2:00 PM

DATE: 03/04/2023

INSTRUCTIONS

 $\frac{1}{1}$. Do not write anything on this question paper.

2. Answer question ONE and any other TWO questions.

QUESTION ONE (30 MARKS)

a. Find the equation of a line through the point (5, -3) which is inclined at $\frac{\pi}{3}$ to the	e positive
direction of the x-axis.	(3marks)
b. Find the rectangular co-ordinates of a point B(4, $\frac{\pi}{2}$).	(3marks)
c. Change $x^2 + y^2 - 4y = 0$ to polar form.	(3marks)
d. Find a vector equation and the cartesian equation of the perpendicular bisectors	s of PQ, where
P and Q are the points with position vectors;	
i) $-3\mathbf{i} - \mathbf{j}$ and $7\mathbf{i} + \mathbf{j}$	(4marks)
ii) $a\mathbf{i} + b\mathbf{j}$ and $2a\mathbf{i} + 3b\mathbf{j}$	(3marks)
e. If $z_1 = 2(\cos 320^0 + j \sin 320^0)$ and $z_2 = 2(\cos 120^0 + j \sin 120^0)$. Determine modul	lus and
argument of $z_2 z_1$	(6marks)
f. Given A = $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 4 & 5 \\ 3 & 6 & 5 \end{bmatrix}$ and B = $\begin{bmatrix} 3 & 4 & -1 \\ 2 & 0 & 8 \\ 3 & -3 & 5 \end{bmatrix}$. Find	
f. Given A = $3 \ 4 \ 5 \ and B = 2 \ 0 \ 8$. Find	
i) B - A	(4marks)
ii) A X B	(4marks)
QUESTION TWO (20 MARKS)	
a Find an equation of the line percent to the line with equation $6x = 2y - 8$ and y	which passag

a. Find an equation of the line parallel to the line with equation 6x - 2y = 8 and which passes through the point (2, -3) (3marks) b. i) Find a vector equation of the line passing through the points A(2, -2, -1) and B(4, -3, 1) (4marks) ii) Hence find the Cartesian equation of the line AB. (3marks)

c. Find the vector (parametric form) and Cartesian equation of the plane through $(0, -2)$, B(-1, 1, 3) and C(2, 1, -1).	the points A(2, (4marks)	
d. Find the vector equation of the line of intersection of the planes;		
$\mathbf{r} = 3\mathbf{i} - \mathbf{j} - \mathbf{k} + \lambda(\mathbf{i} + 2\mathbf{j}) + \mu(\mathbf{i} - \mathbf{k})$ and $\mathbf{r} = 2\mathbf{i} + \mathbf{k} + s(3\mathbf{i} - 5\mathbf{k}) + t(\mathbf{j} + \mathbf{k})$	(4marks)	
e. Find the angle between a and b given that $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} + \mathbf{j} - \mathbf{k}$	(2marks)	
QUESTION THREE (20 MARKS)		
a. Find the distance of the line L with equation $3x - 4y + 8 = 0$ from the point (-2,	3)	
	(2marks)	
b. Four vectors of magnitude 2, $4\sqrt{2}$, 6 and 8 units are inclined at angles of 30° , 4	$5^0, 60^0$ and	
120° to the x- axis respectively. Find magnitude and direction of the resultant vector R.		
	(6marks)	
c. Given $\mathbf{A} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$, $\mathbf{B} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$ and $\mathbf{C} = \mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$. Find	× /	
i) $A \bullet (B X C)$	(2marks)	
ii) $\mathbf{B} \bullet (\mathbf{C} \mathbf{X} \mathbf{A})$	(2marks)	
d. Given the points $A(1, 3, 5)$, $B(4, 12, 20)$ and $C(3, 9, 15)$.	(2000)	
Find; i) AB	(2marks)	
	. ,	
ii) AC	(2marks)	
iii) BC	(2marks)	
iv) Show that AB is collinear to AC	(2marks)	
QUESTION FOUR (20 MARKS)		
a. Solve i) $(2 + 3i)(4 - 5i) = x + yi$	(2marks)	
ii) $(a - 2bi) + (b - 3ai) = 5 + 2i$	(2marks)	
b. Express with real denominator:		
i) $\frac{5+4i}{5-4i}$	(2marks)	
	() and ra	
ii) $\frac{3i-2}{1+2i}$	(2marks)	
c. Simplify $\frac{1}{(1+i)^3}$	a(2rmks)	
d. Find the modulus and argument of $\frac{7-i}{3-4i}$ and express in the form $r(\cos \phi + i \sin \phi)$		
	(3marks)	
e. If $z_1 = 1 + i$ and $z_2 = 7 - i$, find modulus of $\frac{z_1 - z_2}{z_1 z_2}$	(4marks)	
f. If $z = x + yi$ find the real and the imaginary part of $z - \frac{1}{z}$	(3marks)	
QUESTION FIVE (20 MARKS)		
a. Find the angle \emptyset between the lines $3x - 4y + 8 = 0$ and $x + y - 3 = 0$	(3marks)	
b. Find the equation of the perpendicular bisector of the line segment RS warith (4, -5) and S(-2,		
-3).	(4marks)	
c. Find the distance between the points $A(3, -1)$ and $B(-7, 5)$	(2marks)	
d. Simplify $\frac{4-2i}{3-5i}$ and hence calculate the value of $\left[\frac{4-2i}{3-5i}\right]^6$ using Der	. ,	
theorem.	(4marks)	
e. Determine the centre and radius of the circle $x^2 + y^2 - 4x + 10y + 13 = 0$	(4marks)	
f. Convert into Cartesian the following equation $r = \frac{4}{sin\theta + 2cos\theta}$	(3marks)	
sinØ+2cosØ	(