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ABSTRACT

In this study the method of Lie symmetry was used to determine the solution to a third
order first degree nonlinear ordinary differential equation (ODE) fourth degree in sec-
ond derivative that arise in waves of systems like water in shallow oceans. Many third
order nonlinear ordinary differential equations (ODEs) have been developed using numer-
ical methods like the finite difference but their solutions are just approximations within
known boundary conditions or restrictions. To address such limitations, analytical Lie
symmetry method which provides group invariant solutions was applied. This method
does not depend on initial boundary values and gives exact solutions to problems. It has
been shown what Lie symmetry analysis entails by reviewing some relevant nonlinear or-
dinary differential equations which have admitted it. The solution to nonlinear ordinary
differential equation of the general form:

G(x, y, y′, y′′, y′′′) = 0

that has not been developed by other earlier researchers has been worked out sequentially.
A comprehensive Lie symmetry analysis carried out on this nonlinear ordinary differential
equation included Lie groups, Lie symmetry generators, prolongations, invariant transfor-
mations, integrating factors and order reduction. The most significant Lie group theory
application used was the order reduction of the nonlinear ODE from a third order to a
first order which is easily solvable by other known simple methods. The objectives were to
develop and determine both mathematical solution and general solution to a third order
first degree nonlinear ODE of fourth degree in the second derivative, a special case of
wave equation whose form was

y′′′ − y′
(
y′′

y

)4

= 0

using Lie symmetry method. Its solution is the source of knowledge and basis for further
future research.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

A differential equation is an equation in which at least one term contains any differential

coefficients such as dy
dx

, d2y
dx2

, d3y
dx3

, d4y
dx4

and d5y
dx5

whose solution is an equation relating x and

y which contains no differential coefficients. It is an equation which involves a function,

its derivative and the independent variables. If it has only one independent variable, then

it is called an ordinary differential equation. This means that it is a relationship between

an independent variable x, a dependent variable y and one or more derivatives of y with

respect to x. For example:

x+ 2
dy

dx
= 3y (1.1)

x2
dy

dx
= ysin(x) (1.2)

xy
d2y

dx2
+ y

dy

dx
+ e3x = 0 (1.3)

d2y

dx2
+ 2

dy

dx
+ 3y = x2 (1.4)

Any differential equation represents a dynamic relationship, that is, quantities that change,

say x and y and are thus frequently occurring in scientific and engineering problems. A

differential equation is either a linear equation or a nonlinear equation. A differential

equation is said to be linear if it is linear in its dependent variable, for example:

y
′′
sin(x) + x2y = 0 (1.5)

A linear equation in a single variable (unknown) involves powers of a variable no higher

than the first. A linear equation is also referred to as a single equation. A differential
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equation given by

F (x, y, y
′
, ..., yn) = 0 (1.6)

is linear if the function F is a linear function of variables y, y
′
, ..., yn . Thus the general

linear differential equation of order n may be written as:

b0(x)
dny

dxn
+ b1(x)

dn−1y

dxn−1
+ ...+ bn−1(x)

dy

dx
+ bn(x)y = R(x) (1.7)

where R is a function of x and b0, b1, ..., bn are known constants. The term linear refers

to the fact that each expression in the differential equation is of degree one or zero in the

variables: y, y
′
, ..., yn . If R(x) = 0 , then the differential equation is said to be linear and

homogeneous as in

y4 − y = 0 (1.8)

which is homogeneous of order four with constant coefficients. A function f(x, y) is said

to be homogeneous of degree n if on replacing x and y by ∆x and ∆y , where ∆ is a

parameter, we have:

f(x, y) = x4 − x3y (1.9)

is homogeneous of degree four since:

f(∆x,∆y) = (∆x)4 − (∆x)3∆y

= ∆4x4 −∆4x4y

= ∆4(x4 − x3y)

= ∆4f(x, y) (1.10)

otherwise if R(x) 6= 0, then the differential equation is said to be linear and inhomogeneous

as in

xy
′ − 2y = x3 (1.11)

2



is inhomogeneous of order one with variable coefficients. This implies that for a linear

differential equation, none of the differential coefficients is raised to a power other than

one, for example,

dy

dx
= 3x (1.12)

On the other hand, a nonlinear differential equation is one whose differential coefficients

are raised to a power greater than one, for instance,

y
′
+ y2x = 0 (1.13)

x2 + 2

(
dy

dx

)2

+ 4y = 0 (1.14)

A differential equation can be homogeneous or inhomogeneous. A differential equation

is homogeneous if it has no terms that are functions of the independent variable alone.

That is, a homogeneous differential equation is in which every term is of the same degree,

for instance,

y
′′

+ yx+ y = 0 (1.15)

a2 − 3ab− 40b2 = 0 (1.16)

a3 − 3a2b+ 4b3 = 0 (1.17)

6x3 + 7x2y − 7xy2 − 6y3 = 0 (1.18)

4x4 − 37x2y2 + 9y4 = 0 (1.19)

Differential equations used in coordinate geometry are homogeneous, for example, the

parabola y2 = 4ac , an ellipse b2x2 + a2y2 = a2b2 and the rectangular hyperbola xy = c2

. The advantage of using the homogeneous differential equations is that the equations

3



derived from them are also homogeneous and this gives a method of detecting the slips.

Some useful mathematical identities are provided inhomogeneous forms:

(x+ y)3 = x3 + 3x2y + 3xy2 + y3 (1.20)

(x− y)3 = x3 − 3x2y + 3xy2 − y3 (1.21)

An inhomogeneous differential equation is one in which there are terms that are functions

of the independent variables alone. A differential equation whose terms are not of the

same degree is called a inhomogeneous equation, for example,

y
′
+ y + x3 = 0 (1.22)

x2 + y2 + 2x+ 2y = 1 (1.23)

x3 + y3z + z3x = 0 (1.24)

There are two categories of differential equations namely ordinary differential equations

(ODEs) and partial differential equations (PDEs). Any relation between the variables x, y

and the derivatives dy
dx
, d

2y
dx2
, ... is called an ordinary differential equation (ODE). The term

ordinary distinguishes it from a partial differential equation which involves the partial

derivatives. This study considered a nonlinear ODE in its work. A differential equation

with one independent variable present is called an ODE, for example,

y
′′
(x) + y(x) = 0 (1.25)

d2y

dx2
+
dy

dx
− 6y = 0 (1.26)

dy

dx
= cos(x) (1.27)

y
′′′

+ 4y
′′

+ 2y
′ − 6y = 0 (1.28)

4



whereas that with more than one independent variable is known as a PDE, for example,

y2z

x
p+ xzq = y2 (1.29)

p+ 3q = 5z + tan(y − 3x) (1.30)

(yz + xyz)dz + (xz + xyz)dy + (xy + xyz)dz = 0 (1.31)

ODEs yield linearly dependent and linearly independent solutions. A set of functions

f1, f2, ..., fn are said to be linearly dependent if there exist constants C1, C2, ..., Cn not all

zero such that

C1f1(x) + C2f2(x) + ...+ Cnfn(x) = 0 (1.32)

∀xεf = [a, b] otherwise they are linearly independent. For instance, consider a second

order linear differential equation:

a0(x)
d2y

dx2
+ a1(x)

dy

dx
+ a2(x)y = 0 (1.33)

a0 6= 0 , whose two solutions are y1(x) and y2(x) are said to be linearly dependent if there

exist two constants C1 and C2 which are both not zero such that

C1y1(x) + C2y2(x) = 0 (1.34)

Conversely, the two solutions y1(x) and y2(x) are linearly independent if they are not

linearly dependent, that is, if

C1y1(x) + C2y2(x) = 0 (1.35)

⇒ C1 = 0 and C2 = 0. Further, if the Wronskian is zero then the two solutions are

linearly dependent otherwise they are linearly independent. The Wronskian is the criteria

for finding out whether the solutions of a linear differential equation are linearly depen-

dent or not.
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In mathematics, solving differential equations is the most significant driving force behind

its history. A lot of literature is available about the differential equations and yet it is

until recently that the group theory has been applied. The symmetry group of nonlinear

ODEs is a group of transformations of independent and dependent variables that leave

all solutions invariant. This symmetry group generates new solutions to a given nonlinear

ODE which can be used to reduce its highest order to a first order. Solving of nonlinear

ODEs after the introduction of derivatives and integrals was a major achievement. After

this discovery, many methods involving differentiations and integrations were developed

(Erdmann, et. al, 2006). When trying to find solutions to nonlinear ordinary differential

equations, methods employed often terminate such that the trials are left without any

show whether or not there is a solution. This led to the desire of developing a method

that could be used in solving of the largest forms of nonlinear ordinary differential equa-

tions.

According to Yaglom, (1988) Norwegian mathematician Sophus Lie put forward many

of the fundamental ideas behind symmetry methods. Late nineteenth century, Sophus

Lie introduced the notion of Lie group to study the solutions of ODEs. The techniques

of integration got extended and unified when he managed to reduce by one the order of

point transformations under one - parameter Lie group of point transformations that is

invariant. Lie embarked on developing these continuous groups that are now used in many

career based sciences. Lie point symmetry of a system is a local group of transformations

that maps every solution of the system to another solution of the same system. Rotations,

scalings and translations are simple examples of Lie groups (Olver, 1993).

The significance of the outcomes for Lies theory comes from the symmetries of any dif-

ferential equation found from its determining system of linear homogeneous partial dif-

ferential equations (PDEs). By means of Loewys and Janets results for nonlinear ODEs

may be decomposed in a number of basic problems whose solution can be designed. In

this approach, the symmetries of a nonlinear ODE serve the main purpose of identifying

its equivalence class or classes, for which a canonical form is known (Riley, et. al, 2008).
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There are three stages in the scheme for solving second - order ODEs: First find the group

type of symmetry. This is most efficiently achieved through Janet base coefficients for

the system finding. Second, a canonical form of the transformed equation should corre-

spond to its type symmetry and third, get the solution of the equation given by solving

its canonical form.

According to Aminer, (2015) Sophus Lie came upon this kind of situation when he started

tackling this problem. He recognized the transformation properties of a nonlinear ODE

under certain groups of continuous transformations as being fundamental in analyzing

its solution (Mehmet, 2004). It shows how derivatives of the dependent variable y with

respect to the independent variable x relate.

The symmetry methods for solving differential equations were initially developed by So-

phus Lie (1988). He introduced the notion of continuous groups known as Lie groups or

symmetry groups for the applications of the differential equations and was based on the

system of invariance under the Lie group of transformations. Therefore a symmetry group

is a group of transformations that map any solution of the system onto another solution

of the same system. Thus Lie group analysis is a mathematical theory which synthesizes

the symmetries of different nonlinear ODEs. The nonlinear ODE is thus a function of x

which is written as y(x). It has a closed solution if y(x) can be expressed in terms of the

standard elementary functions like exp (x), ln (x), cos (x), sin (x), tan (x) (Kamke, 1967).

Lie among other things, came up with a classification of differential equations in the terms

of their symmetry groups, hence identifying the set of differential equations that could be

integrated or reduced to a lower order equations by means of theoretical group arguments

which are then simpler to solve. The basic idea of Lie was to find all Lie groups of the given

nonlinear ODE so that any solution to this nonlinear ODE is transformed into another

solution using the coordinate transformations of the respective Lie groups. This implies

that all the Lie groups with respect to which the set of solutions of the nonlinear ODE

is invariant and the solutions which result from this procedure are called Lie symmetry

solutions. Lie groups represent a subject in which the algebraic groups and topological

7



structures are both interlinked by the condition of continuity which involves the operation

of group multiplication. Mathematical models of real life phenomena are formulated in

the form of differential equations. The general theory of differential equations is one of

the most essential applications of Lie group theory. One of the main problems of the

group analysis of differential equations is to study the action of the group admitted by

the given equation in a set of solutions to this equation. The action of the admitted group

introduces into the set of solutions an algebraic structure which may be used to achieve

the goals. It involves a description of the general properties of all the members of the

family of solutions which are easier than the general solution.

The order of differential equation is the order of the highest order derivative present in

the equation, for example,

d2y

dx2
+ 2

(
dy

dx

)3

+ y = 0 (1.36)

is a differential equation of order two and it is called a second order equation. Other

examples are:

y
′
= y3x (1.37)

y
′′

+ 2xy
′
+ 3y = x2 (1.38)

y
′′′

= yy
′′

(1.39)

which are first, second and third order respectively. In general, the differential equation

F (x, y, y
′
, ..., y(n)) = 0 (1.40)

is called as an nth order. A first order ordinary differential equation is an equation that

involves at most the first derivative of an unknown function. If y, the unknown function,

is a function of x, then write the first order differential equation as

dy

dx
= g(x, y) (1.41)

8



where g(x, y) is a given function of the two variables x and y. The highest derivative

contained in a nonlinear ODE is its order, that is, the order of a differential equation

is determined by the highest differential coefficient present. It is that of the highest

derivative occurring in it. For example,

x
dy

dx
− y2 = 0 (1.42)

is called first order

xy
d2y

dx2
− y2sin(x) = 0 (1.43)

is second order

d3y

dx3
− y dy

dx
+ e4x = 0 (1.44)

is third order and so on (Iserles, et. al, 2000).

In mathematics, they can occur when arbitrary constants are eliminated from a given

function. A function with one arbitrary constant gives a first order equation. A function

with two arbitrary constants gives a second order equation. It can be generalized that

an nth order differential equation is derived from a function having n arbitrary constants.

Mathematicians have solved nonlinear ordinary differential equations of orders higher

than one and eventually obtained their solutions. Their solutions provided answers to

nonlinear ODEs and also established a new field called the theory of groups, the basis of

modern algebra (Schwarz, 1988).

Nonlinear ODEs are further grouped according to degree. The degree of a differential

equation is the highest power of the derivative in the given equation, for example,

y
′ − 2y2 = cos(x) (1.45)

y3 + (y
′
)2 = 0 (1.46)

(y
′′
)3 + 2xsin(y) = ex (1.47)
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which are first, second and third degree respectively. After a nonlinear ODE has been

rationalized, the highest order derivative is raised to an index called the degree, this is

to say that the degree of a differential equation is that to which the derivative of the

highest order is raised when the equation is expressed in a rational integral form, hence

the nonlinear ODE:

y′′′ − y′
(
y′′

y

)4

= 0 (1.48)

is a third order first degree nonlinear ordinary differential equation of fourth degree in the

second derivative. Differential equations may be formed in practice terms from a consid-

eration of the physical problems to which they refer. To solve a differential equation, the

function for which the equation is true has to be developed. This means that the equa-

tion has to be manipulated so as to eliminate all the derivatives and leave a relationship

between y and x. Many practical problems in engineering give rise to second and third

order differential equations of the form:

a
d2y

dx2
+ b

dy

dx
+ cy = f(x) (1.49)

a
d3y

dx3
+ b

d2y

dx2
+ c

dy

dx
+ dy = f(x) (1.50)

respectively, where a, b, c and d are constant coefficients and f(x) is a given function of

x. This nonlinear ODE is commonly used in many physical applications especially in

engineering field and its very complex to be solved analytically. Differential equations

have many ingenious but limited methods for obtaining exact solutions and they have a

feature in common, namely they exploit their symmetries which lead to exact solutions

(Dresner, 1999).

1.2 Statement of the Problem

Consider a nonlinear ODE of the form:

y′′′ − y′
(
y′′

y

)4
= 0

10



whose general solution has been worked out analytically using the method of Lie sym-

metry or numerically using the method of finite difference or finite elements where the

convergence of the numerical schemes wholly depend on the given initial boundary values.

The adjoint-symmetries for the nonlinear ODE are obtained but the variational symme-

tries which are not invariant and the true symmetries which represent invariance under

transformations of the nonlinear ODE are not known. The variational symmetries take

up new variables as invariance under a continuous transformation that yield differential

invariants whereas true symmetries lead to infinitesimal generators and they are geometric

transformations such as translations, reflections or rotations. Therefore to be able to get

the solution to the given nonlinear ODE, there is a great need to find all the Lie groups

admitted and all the symmetries of the wave equation. It is due to this that this study

has attempted to determine the solution to a special case of wave equation (1.48) which

has been expressed as

y
′′′ − y′(y)−4(y

′′
)4 = 0 (1.51)

using analytic method of Lie symmetry. The solution by this method neither depends on

initial or boundary values nor is it an approximation to the exact solution.

1.3 Objectives of the Study

The objectives of this study were:

(i) To develop a mathematical solution to wave equation of third order first degree

nonlinear ordinary differential equation of fourth degree in second derivative (1.48)

(ii) To determine a general solution using Lie symmetry analysis.

1.4 Significance of the Study

The solution to the wave equation (1.48) using Lie symmetry method shall become an

extension of the analytic methods for solving third order first degree nonlinear ordinary

differential equation of fourth degree in second derivative and other similar nonlinear

11



ordinary differential equations in future. This is a boost the existing knowledge in solving

mathematical problems using Lie symmetry analysis.

1.5 Scope of the Study

The study analyzed and generated a solution to a third order first degree nonlinear ordi-

nary differential equation of fourth degree in the second derivative which is a special form

of a wave equation (1.48). The method employed was Lie symmetry which developed and

applied Lie groups, Lie algebras, infinitesimal transformations, prolongations, invariance

under transformations, variational symmetries, Lie point symmetries, integrating factor

and reduction of order.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This study looked at some of the works carried out in the same area of study which enabled

the objectives to be achieved. This was done through borrowing what was relevant to the

work, criticizing areas that do not add value to the work and extension of facts that are

genuinely paramount to the research. The most recent works were studied, that is, the

year 2015 and as early as the year 1918, which were relevant to this study area of interest.

2.2 Review of Solution to Nonlinear Wave Equation of Third Order

Opiyo,(2015) used the method of Lie symmetries to solve a third order first degree non-

linear ordinary differential equation of cubic in the second order derivative and got a

solution. The equation was of the form:

y′′′ = y

(
y′′

y′

)3

(2.1)

whose solution is:

V =
1

A(U ′)4

∫
U(U ′′)3(U ′)−2dU (2.2)

He used Lie symmetry group invariant method where he applied Lie groups of trans-

formations, Lie algebras, infinitesimal transformations, invariance under transformation,

symmetry, Lie’s integrating factor, method of canonical variables, Lie point symmetries

and reduction of order. In this work infinitesimal transformations were used and extended

this to degree four instead of degree three, symmetry, invariance under transformation,

Lie’s integrating factor and order reduction as applied in his research.The adjoint sym-

metries and method of canonical variables were not used in this work. The wave equation

of study was actually an extension of his wave equation of research where the point of
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difference was the nonlinear term and the degree used. There is variation in the both

solutions obtained and went a further step and attempted to come up with a general

solution that holds true to all wave equations similar to the equation of study.

Aminer,(2014) applied Lie symmetry analysis in solving a fourth order nonlinear wave

equation, a special type of nonlinear ODE. The form of the equation was:

(yy′(y(y′)−1)′′)′ = 0 (2.3)

and its solution is:

V =
1

U3 + e2U ′−1

∫
(U3 + e2U

′−1)(4U−1U ′′2U ′−4 − 4U ′′3U ′−6 − U−2U ′−2U ′′)dU (2.4)

He developed Lie groups of transformations, Lie algebras,infinitesimal transformations,

invariance under transformation, symmetry, Lie’s integrating factor, method of canonical

variables, Lie point symmetries, increasing of order and reduction of order. He used the

symmetry transformations, symmetry reductions and global symmetry transformations

to come up with all the solutions corresponding to each Lie group admitted by the special

wave equation (2.3). The study applied the processes of finding infinitesimal transfor-

mations, Lie algebras, Lie groups of transformations, invariance under transformations,

integrating factors and reduction of order during this research work.

Yulia, (2008) solved the equivalence problem of the third order ordinary differential equa-

tion which was quadratic in the second order derivative without a higher degree. For this

group of differential equations the differential invariants of the group of the point equiv-

alence transformations and the invariant differentiation operators were constructed. By

using these results the differential invariants of thirteen Chazy equations were calculated.

They provided examples of finding equivalent equations by the use of their invariants.

Some new examples of the linearised equations by a local transformation were achieved.

These are Schwarzian and Chazy equations. He employed Lie groups, infinitesimal gen-

erators, transformation maps and group invariants. All the above basic concepts were

found to be applicable in this study. The only difference was in the wave equations stud-

ied where by it tackled an equation of both higher order and higher degree.
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Leach, et. al,(2007) showed using group symmetries that the behaviour of a relativistic

star is described by the following system of nonlinear ODEs:

1

γ2
[γ(1− e−2λ)]′ = ρ (2.5)

− 1

γ2
(1− e−2λ) +

2v′

γ
e−2λ = p (2.6)

e−2λ(v′′ + v′2 +
v′

γ
− v′λ′ − λ′

γ
) = p (2.7)

in a spherically symmetric space - time which is static. Here, primes denote differentiation

with respect to the radial coordinate γ . The functions v = v(γ) and λ = λ(γ) represent

the gravitational potential; ρ = ρ(γ) and p = p(γ) are the energy density and pressure

respectively. Kweyama, (2005) showed that (2.5) - (2.7) may be represented in a number of

equivalent forms to make the integration easier. It is convenient to use the transformation

equations:

x = Cγ2 (2.8)

Z(x) = e−2λ(γ) (2.9)

A2y2(x) = e2v(γ) (2.10)

Under the transformation (2.8) - (2.10), the Einstein field equations (2.5) - (2.7) take the

form:

1− Z
x
− 2

dZ

dx
=
ρ

C
(2.11)

4Z
1

y

dy

dx
+
Z − 1

x
=

p

C
(2.12)

4Zx2
d2y

dx2
+ 2x2

dZ

dx

dy

dx
+ (x

dZ

dx
− Z + 1)y = 0 (2.13)
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and obtained the following solution:

2x2y3y′′′ + 2x3y2y′y′′′ − xy2y′2 + 4x2yy′3 + 2x3yy′4

+ 5xy3y′′ − 2x2y2y′y′′ + 2x3yy′2y′′ − 6x3y2y′′2 = 0 (2.14)

The basic concepts were the same to the ones used but origin of the wave equations differ.

Leach looked at a wave equation of a star that is not in motion, that is, a stationary

wave whereas it studied waves produced by movement of water masses in shallow oceans.

Our solution was much simpler and shorter unlike Leach’s solution that appears lengthy,

tedious and uncondensed. It points out high chance of making further errors during the

manipulation process.

Kweyama, (2005) researched on the role of Lie symmetries in generating solutions to

differential equations that arise in particular physical systems. He looked at a nonlinear

ODE arising from the field equations in the early universe cosmological models of the

form:

2HH ′′ + 6H2H ′ −H ′2 + aH2 = b (2.15)

where H = H(t) and got a quadratic equation of the form:

p2 + 2pq − 1 = 0 (2.16)

which is a simple original second order ODE, where p and q are invariants. Systems of

nonlinear differential equations appear in modeling physical phenomena arising in rela-

tivistic astrophysics in a similar manner they occur in water waves of shallow oceans.

Kweyama used the following concepts in his study: Lie groups, Lie algebras, infinitesimal

transformation, invariance under transformation, symmetry, Lie point symmetries, reduc-

tion of order, increasing of order, nonlocal symmetries and transformation of symmetries.

In this study, all the concepts apart from increasing the order and nonlocal symmetries

were applied. The integrating factors were used which did not feature in his work.

Oduor, (2005) used the method of symmetry to solve a generalized Burgers equation

16



which is a nonlinear PDE found in wave theory. The form of the equation was:

ut + uux = λuxx (2.17)

and found its generalized global solution with no restriction to λ . He developed Lie

groups, infinitesimal transformations, prolongations, Lie algebras, infinitesimal genera-

tors and the invariant transformations. Likewise infinitesimal transformations, genera-

tors, prolongations, Lie algebras, Lie groups and invariant transformations in this work

were applied but the outstanding difference was that he tackled a PDE as opposed to

ODE.

Mehmet, (2004) worked on the fourth order generalized Burgers equation by using Lie

symmetry method. He confined himself to the application of Lie point symmetries, an

application to fourth order. By using the computer programs under the computer package

of mathematica, they found a three dimensional solvable Lie algebra of the point symme-

tries of the generalized Burgers equation four. They obtained the similarity reductions

of these symmetries. The same Lie symmetry analysis was used when working on this

wave equation. Lie algebras, reduction of order and point symmetries were applied in the

research study.

Bluman and Anco, (2002) worked on how to find all the integrating factors and the

corresponding first integrals for any system of ordinary differential equations. These in-

tegrating factors were shown to be all the solutions of both the adjoint system of the

linearised system and a system which presents an extra adjoint invariance condition of

the ordinary differential equations. They put forward an explicit construction formula to

find the resulting first integrals in terms of integrating factors and the methods for get-

ting these factors. More specific, the utilization of known first integrals and symmetries

to find new integrating factors was advanced. The knowledge of group symmetries and

integrating factors has been widely used in this study.

Omolo, (1997) used the method of Lie symmetry analysis of differential equations to solve

a nonlinear PDE. He applied Lie groups, infinitesimal generators, prolongation, Lie alge-
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bras, symmetry and invariance under transformations. He employed a stability approach

to exact solutions of the nonlinear PDE provided by symmetry groups. This study used

the same concepts and yet the wave equation was a nonlinear ODE. He showed that the

assumptions made while solving for the infinitesimals were not necessary because the con-

ditions present themselves in a natural way.

Nucci, (1997) revisited solving of differential equations using the symmetries. He re-

viewed the role of symmetries in the solving of differential equations. The application of

the classical Lie point symmetries in solving problems in meteorology, draining of fluid

and epidemiology of AIDS also saw the use of non - classical symmetries. He showed that

the iterations of non-classical symmetries method give new equations which are nonlinear

and they inherit the Lie symmetry algebra of the given differential equation. Their differ-

ential invariants yield new solutions to the initial differential equation. It is this area of

differential invariants that was borrowed and led to the required general solution of this

wave equation.

Olver, (1993)used Lie symmetry analysis to come up with an existence theorem showing

that if an nth order ordinary differential equation admits r−parameter Lie solvable group

of transformations then it is the general solution of an (n−r)th order ordinary differential

equation. He employed Lie group, Lie algebras, infinitesimal generators, group invariants

and prolongations which have been applied to the wave equation that has been deter-

mined. He established a useful theorem applied to wave equations but in this case the

theorem was not used because group invariants yielded the solution by applying simple

known calculus methods.

Abraham-Shrauner, (1993) determined second order Lie symmetries of nonlinear ODEs

and obtained a solution. He applied Lie groups, group invariants and order reduction to

get his solution. The same basic concepts of Lie symmetry were applied to this equation

of study. This wave equation was of a higher order than his, that is, order three against

order two.

Schwarz, (1988) used the method of Lie symmetries to solve a second order differential
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equation and obtained a solution successfully. He worked out its Lie groups, infinitesimal

generators, Lie algebras, prolongation and differential invariants which yielded the solu-

tion. In this equation of study, similar concepts were applied and got its general solution.

Bluman and Cole, (1974) came up with a generalized Lie method known as the non -

classical method of the group invariant solutions which had earlier been generalized by

Olver and Rosenau, (1987). In this analysis, one replaces the conditions for the invariance

of the given system of the differential equations by the weaker conditions for the invari-

ance of the combined system consisting of the initial differential equations along with the

equations requiring the group invariance of the solutions. By this device, a much wider

class of groups is potentially available and hence there is the possibility of further kinds

of explicit solutions being found by the same reduction techniques.

Spiegel, (1958) determined successfully the solutions of second order third degree in first

order nonlinear ordinary differential equations using the method of symmetries. The basic

concepts employed were Lie groups of transformations, Lie algebras, infinitesimal trans-

formations, invariance under transformation, Lies integrating factor, Lie point symmetries

and order reduction. This study borrowed similar concepts in tackling its wave equation.

This study developed a higher equation in terms of order and degree, that is, order three

and degree four.

Bianchi, (1918) used order reduction to solvable groups of Lie in mathematical systems

which led him from higher order to lower order differential equations. He employed Lie

groups, Lie algebras, infinitesimal transformations, differential invariants, integrating fac-

tor and reduction of order to achieve that. The lower equation was easier to solve by

using other available methods, for example, quadratic equation methods and calculus.
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CHAPTER 3

MATERIALS AND METHODOLOGY

3.1 Introduction

In order to determine the solution to equation (1.48) the following mathematical concepts

will be applied: Lie groups, infinitesimal generators, Lie algebras, invariance under trans-

formations, reduction of order, prolongations and integrating factors. In the first step

Lie groups were developed which enabled to generate the infinitesimal generators. The

application of prolongations onto the given equation resulted into non-zero Lie brackets

that laid the foundation for getting differential invariants. These invariants were then

used to reduce a third order to the first order which is easily solvable by other simpler

known methods, for example integration. The use of integrating factors yielded both

mathematical and general forms of the solution.

3.2 Lie Groups of Transformations

Definition 1: [A Group]

A group K is a non-empty set of elements with a law of composition Ω defined between

the elements satisfying the following conditions (Olver, 1993):

(i) Closure Property: If x and y are elements of K ; then Ω(x, y) , ∀x, y ∈ K ; then

Ω(x, y) ∈ K

(ii) Associative Property: For any elements x, y and z of K , ∀x, y, z ∈ K ; then

Ω(x,Ω(y, z)) = Ω(Ω(x, y), z) (3.1)

(iii) Identity Property : K contains a unique element called identity element I such

that for any element x of K , there exist an identity element I ∈ K such that :

∀x ∈ K ; then

Ω(I, x) = Ω(x, I) = x (3.2)
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(iv) Inverse Property: For any element x of K there is a unique element in K called

inverse element x−1 such that ∀x ∈ K ; ∃ inverse element x−1 ∈ K ; then

Ω(x−1, x) = Ω(x, x−1) = I (3.3)

The number of elements per group is either finite or infinite. The integers under the

ordinary addition is true such that

y t x = x t y (3.4)

for all pairs of integers x, y . Under the operation t , any two particular elements

in a group satisfying (3.4) commute and the group is an Abelian if they are all pairs

of elements in a group.

Definition 2: [A Group of Transformations]

Consider a transformations set:

x = (x1, x2, ..., xm) (3.5)

lie in a region D ⊂ Rm . Consider the transformations set:

x∗ = X(x, ε) (3.6)

defined for each x in D ⊂ R depending on real parameter ε lying in S ⊂ R. Suppose

Ω(ε, δ) defines a composition parameter law ε, δ then (3.6) forms a transformation group

on D (Bluman and Anco, 2002).

x∗ = X(x, ε) (3.7)

x∗∗ = X(x,Ω(ε, δ)) (3.8)

Hence,it is a transformations Lie group.

Conditions for Transformations Lie Group
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(i) for each parameter ε in S are one-to-one and onto D

(ii) S with composition law Ω forms a group

(iii) x∗ = x when ε = I ,

X(x, I) = x (3.9)

(iv) If x∗ = X(x, ε) ;

x∗∗ = X(x,Ω(ε, δ)) (3.10)

(v) ε is a continuous parameter and S is an interval in R

(vi) X is differentiable with respect to x infinitely in D and an analytic function of ε in

S

(vii) Ω(ε, δ) is analytic function of ε and δ, and ε ∈ S, δ ∈ S

Illustration of Lie Group of Transformations (I)

Given that

x∗ = X(x, ε) = x+ ε (3.11)

define a transformation.

x∗ = x+ ε (3.12)

Here we see that D = R, S = R

x∗ = X(x, ε) = X(x, 0) = x (3.13)

x∗∗ = X(x∗, δ) = x∗ + δ = x+ (ε+ δ) = x+ Ω(ε, δ) (3.14)

and clearly x∗ = X(x, ε) defines a simple group on K . Here x∗ = X(x, ε) is a Lie group

of transformations.
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Illustration of Lie Group of Transformations (II)

Consider

X(x, y, ε) = [x+ ε,
xy

x+ ε
] (3.15)

x∗ = x+ ε,

y∗ =
xy

x+ ε
(3.16)

x∗∗ = X(x∗, δ) = x∗ + δ = x+ (ε+ δ) = x+ Ω(ε, δ)

y∗∗ =

(
x∗y∗

x∗ + δ

)
= xy(x+ Ω(ε, δ)) (3.17)

and

X(x, y, 0) = (x, y) (3.18)

Hence the transformation X(x, y, ε) forms a Lie group of transformations which has been

widely used in this work when carrying out some operations onto some given equations.

3.3 Lie Algebras

Definition 3: [Vector Field]

A vector field V on a set M assigns a tangent vector V |x to each point x ∈ M with V |x

varying smoothly from point to point. In local coordinates (x1, x2, ..., xm) a vector field

has the form:

V |x = ξ1(x)
∂

∂x1
+ ξ2(x)

∂

∂x2
+ ...+ ξm(x)

∂

∂xm
(3.19)

where each ξi(x) is a smooth function of x (Olver, 1993).

Definition 4: [Commutator]

If G1 and G2 are vector fields then their commutator (also known as a Lie bracket) is

defined as follows (Cantwell, 2002):

[G1, G2] = G1G2 −G2G1 (3.20)
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Illustration of Non-zero Lie Brackets

Consider the following two vector fields (Hydon, 2000):

G1 =
∂

∂x

G2 = x
∂

∂x
+

3

4
y
∂

∂y

The commutator for the two vector fields is:

[G1, G2] =
∂

∂x

(
x
∂

∂x
+

3

4
y
∂

∂y

)
−
(
x
∂

∂x
+

3

4
y
∂

∂y

)
∂

∂x
=

∂

∂x
= G1 (3.21)

This was applied when calculating for non - zero Lie brackets which was very important

in leading to the mathematical and general forms of the solution.

Definition 5:[Lie Algebra]

L, Lie algebra is a vector space over some field F , on which commutation is defined

satisfying the following Sophus Lie conditions (Hydon, 2000):

(i) Closure :

G1, G2 ∈ L =⇒ [G1G2] ∈ L

(ii) Skew-symmetry :

[G1, G2] = −[G2, G1] (3.22)

(iii) Bi-linearity :

[k1G1 + k2G2, G3] = k1[G1, G3] + k2[G2, G3] (3.23)

[G1, k1G2 + k2G3] = k1[G1, G2] + k2[G1, G3] (3.24)

where k1 and k2 are constants.

(iv) Jacobi’s Identity :

[G1, [G2, G3]] + [G2, [G3, G1]] + [G3, [G1, G2]] = 0 (3.25)
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for all G1, G2 and G3 in L . If

[G1, G2] = 0, then it is said that G1 and G2 commute and if all the elements of L

commute then L is called Abelian Lie algebra.

Definition 6:[Solvable Lie Algebra]

A solvable Lie algebra L has the derived series:

L ⊇ L′ = [L,L]

L ⊇ L′′ = [L′, L′]

...

L ⊇ L(k) = [L(k−1), L(k−1)] such that L(k) = (0) for some k > 0 (Omolo, 1997).

3.4 Infinitesimal Transformations

Let us consider a transformation of one-parameter:

x∗ = X(x, y, λ) (3.26)

y∗ = Y (x, y, λ) (3.27)

where λ is a continuous parameter. By taking the Taylor series expansion of this trans-

formation about the point λ = λ0 generates :

x∗ = x+

(
∂X

∂λ

)
λ=λ0

(λ− λ0) + ... (3.28)

y∗ = y +

(
∂Y

∂λ

)
λ=λ0

(λ− λ0) + · · · (3.29)

The partial derivatives evaluated at λ = λ0 with respect to group parameter λ are known

as infinitesimals (Cantwell, 2002) and are functions of x and y. Lets denote them by:(
∂X

∂λ

)
λ=λ0

= ξ(x, y) (3.30)

(
∂Y

∂λ

)
λ=λ0

= η(x, y) (3.31)
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Considering the values of λ sufficiently close to λ0 by writing the coordinates of the

transformation as follows:

x∗ = x+ ξ(x, y)(λ− λ0) (3.32)

y∗ = y + η(x, y)(λ− λ0) (3.33)

where terms of second and higher degree in (λ− λ0) have been neglected. This transfor-

mation is known as an infinitesimal transformation (Dresner, 1999).

Infinitesimal Generators

The one-parameter Lie group of transformations of infinitesimal generator is an operator:

X = X(x) = γ(x).∇ =
n∑
i=1

γi(x)
∂

∂xi
(3.34)

where the gradient operator ∇ is;

∇ =

(
∂

∂x1
,
∂

∂x2
, ...,

∂

∂xn

)
(3.35)

for any function that is differentiable:

F (x) = F (x1, x2, ..., xn) (3.36)

XF (x) = γ(x).∇F (x) =
n∑
i=1

γi(x)
∂F (x)

∂xi
(3.37)

Thus a one - parameter transformations of Lie group is equivalent to its infinitesimal

generator in the same way it is equivalent to its infinitesimal transformation.

Theorem of Transformations for One-parameter Lie Group

The transformations for one-parameter lie group is equal to:

x∗ = eεXx = x+ εXx+
ε2

2
X2x+ ... (3.38)

= [1 + εX +
ε2

2
X2 + ...]x
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=
∞∑
i=0

εk

k!
Xkx

where the generator X = X(x) is the operator below defined by (3.34):

Xk = XXk−1, k = 1, 2, ... (3.39)

in particular XkF (x) is the function found by applying the operator X to the function

Xk−1F (x), k = 1, 2, ...

3.5 Prolongations (Extended Transformations)

When applying a transformations point:

x∗ = X(x, y, ω) (3.40)

y∗ = Y (x, y, ω) (3.41)

to the differential equation:

H(x, y, y′, y′′, y′′′, ..., y(m)) = 0 (3.42)

y′ =
dy

dx
(3.43)

To transform the derivatives y(m) that is to extend (prolong) the point transformation

to the derivatives. The task here is extending on the transformation (3.42) acting on

(x, y) to the (x, y, y1, y2, y3, ..., ym) space with the property of preserving the contact of

differentials conditions:

dx, dy, dy1, dy2, ..., dym

dy = y1dx

dy1 = y2dx

dy2 = y3dx

...

dym = ym+1dx (3.44)
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3.6 Invariance under Transformations

Definition 7:[Invariant]

An invariant is that which remains unchanged when its constituents change. The concept

of invariance has a physical basis in the conservation laws of mechanics. A function f

under a Lie group is invariant iff;

f(x∗, y∗) = f(X(x, y, λ), Y (x, y, λ)) = f(x, y) (3.45)

The function must read the same when expressed in the new variables (Cantwell, 2002).

A simple example of invariance under a continuous transformation is the rotation of a

circle about an axis that is normal to its centre.

3.7 Variation Symmetries

Definition 8:[Symmetry]

Symmetry is an operation which leaves invariant that upon which it operates. Symmetry

of a transformation geometrical object apparently leaves the object unchanged. Consider

the transformation of infinitesimal form:

x∗i = xi + εωi, i = 1, 2, ...,m (3.46)

where ε is a parameter of smallness. Here equation (3.46) can be written as

x∗i = (1 + εG)xi (3.47)

where

G = ωi
∂

∂xi
(3.48)

is a differential operator called the generator of the transformation ( 3.46). Consider:

G = ω
∂

∂x
+ φ

∂

∂y
(3.49)

Under the infinitesimal transformation generated by G, a function f(x, y) becomes:

f ∗(x∗, y∗) = (1 + εG)f(x, y)
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= f + ε

(
ω
∂f

∂x
+ φ

∂f

∂y

)
(3.50)

If the form of f is unchanged then

f ∗(x∗, y∗) = f(x, y) (3.51)

or

ω
∂f

∂x
+ φ

∂f

∂y
= 0 (3.52)

then G is called a symmetry of f . In mathematics, all symmetries represent invariance

under transformations which may be translations, reflections or rotations.

3.8 Lie Theory of Differential Equations

Definition 9:[Lie Point Symmetries of ODEs]

Point symmetry is a symmetry in which the infinitesimals depend only on coordinates

(Yulia, 2008). Lie point symmetry is described as a point symmetry that depends contin-

uously on at least one-parameter, thus the parameters can vary continuously over a set

of scalar non-zero measure. Lie point symmetries of ODEs are of the form:

G = ω
∂

∂x
+ φ

∂

∂y
(3.53)

where ω and φ are coefficients functions of only x and y. To apply a point transformation

to an mth order ODE;

f(x, y, y′, y′′, ..., y(m)) = 0 (3.54)

where:

y′ =
dy

dx
, y′′ =

d2y

dx2
, ..., y(m) =

dmy

dxm
(3.55)

There is a need to know how derivatives undergo the infinitesimal transformation:

x∗ = x+ εω(x, y) (3.56)

y∗ = y + εφ(x, y) (3.57)
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which has a generator given by

G = ω(x, y)
∂

∂x
+ φ(x, y)

∂

∂y
(3.58)

In terms of the quantities x∗ and y∗ it gives the derivative;

dy

dx
=

d(y + εφ)

d(x+ εω)

=
dy
dx

+ εdφ
dx

1 + εdω
dx

= (y′ + εφ′)(1− εω′ + ε2ω′2 − ...)

= y′ + ε(φ′ − y′ω′) (3.59)

which was terminated at O(ε2). The primes here are for total differentiation with respect

to x. Now the second derivative gives:

d2y∗

dx∗2
=

d

dx∗

(
dy∗

dx∗

)
=

d[y′ + ε(φ′ − y′ω′)]
d(x+ εω)

=
dy′

dx
+ ε d

dx
(φ′ − y′ω′)

1 + εω′

= y′′ + ε(φ′′ − 2y′′ω′ − y′ω′′) (3.60)

Further, the third derivative is as follows:

d3y∗

dx∗3
= y′′′ + ε(φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′) (3.61)

A fourth derivative yields:

d4y∗

dx∗4
= y(iv) + ε(φ(iv) − 4y(iv)ω′ − 6y′′′ω′′ − 4y′′ω′′′ − y′ω(iv)) (3.62)

In general, it generates the formula (Leach, et. al,2007):

dmy∗

dx∗m
= y(m) + ε

(
φ(m) −

m∑
i=1

Cm
i y

(i+1)ω(m−i)

)
(3.63)

where the superscript (i) denotes di

dxi
and Cm

i is the number of combinations of m objects

taken i at a time. To deal with the infinitesimal transformations of equations and functions
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involving derivatives, the extensions of the generator G are needed. Its indicated that a

generator G has been extended by writing

G[1] = G+ (φ′ − y′ω′) ∂
∂y′

(3.64)

G[2] = G[1] + (φ′′ − 2y′′ω′ − y′ω′′) ∂

∂y′′
(3.65)

for the first and second extensions respectively. When generating an extension of G it has

to extend G such that all derivatives appearing in the equation or function are included

in the extension. For an mth order differential equation, the mth extension is of the form

(Bluman, et. al, 2009):

G[m] = G+
m∑
i=1

{
φ(i) −

i∑
j=1

(
i

j

)
y(i+1−j)ω(i)

}
∂

∂y(i)
(3.66)

The generator

G = ω
∂

∂x
+ φ

∂

∂y

is a symmetry of the differential equation

E(x, y, y′, y′′, ..., y(m)) = 0 (3.67)

if and only if

G[m]EE=0 = 0 (3.68)

which means that the action of the mth extension of G on E is zero when the original

equation is satisfied.

3.9 Reduction of Order

If a differential equation:

E(x, y, y′, ..., y(m)) = 0 (3.69)
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has a symmetry:

G = ω(x, y)
∂

∂x
+ φ(x, y)

∂

∂y
(3.70)

to obtain an equation of order (m − 1) in a systematic manner. This is achieved by

using the zeroth and first order differential invariants which are the two characteristics

associated with G[1]. The characteristics are obtained by solving the following system of

ODEs (Baumann, 2000):

dx

ω
=
dy

φ
=

dy′

(φ′ − y′ω′)
(3.71)

3.10 Integrating Factors

Integrating factors are all solutions of both the adjoint symmetry of the linearised system

of ordinary differential equations and a system that represents an extra-adjoint-invariance

condition. The following theorem establishes the relationship between integrating factors

and infinitesimal symmetries of differential equations of the first order.

Theorem of Integrating Factor

Consider a first order ODE:

M(x, y)dx+N(x, y)dy = 0 (3.72)

which admits a one-parameter Lie group G with an infinitesimal generator:

X = σ(x, y)
∂

∂x
+ ψ(x, y)

∂

∂y
(3.73)

if and only if the function:

ρ =
1

(σM + ψN)
(3.74)

is the integrating factor for equation (3.72) provided that σM + ψN 6= 0.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This study determined a solution to a third order first degree nonlinear, non-homogeneous

ODE of fourth degree in second derivative which is a form of a wave equation:

F (x, y, y′, y′′, y′′′) = 0 or y′′′ = f(x, y, y′, y′′) (4.1)

The objectives were to develop and determine both mathematical and general solutions

to the special case (4.1) of the form:

y′′′ − y′
(
y′′

y

)4

= 0 (4.2)

using the method of Lie symmetry. By expressing (4.2) in other ways gives:

y′′′ − y′(y
′′4

y4
) = 0

when the power is brought into the bracket.

⇒ y′′′ − y′(y)−4(y′′)4 = 0 (4.3)

after applying the law of indices and removal of the fraction hence known as the trans-

formation equation.

4.2 Mathematical Solution of Nonlinear Wave Equation of Third Order

By applying the mth extension of G given as:

G[m] = G+
m∑
i=1

{
φ(i) −

i∑
j=1

(
i

j

)
y(i+1−j)ω(i)

}
∂

∂y(i)
(4.4)

where m is the order, i is the upper limit and j is the lower limit, from (3.66). Then the

third extension of G[3] is:

G[3] = G[2] + (φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′) ∂

∂y′′′

= G[1] + (φ′′ − 2y′′ω′ − y′ω′′) ∂

∂y′′
+ (φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′) ∂

∂y′′′
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∴ G[3] = ω
∂

∂x
+ φ

∂

∂y
+ (φ′ − ω′y′) ∂

∂y′
+ (φ′′ − 2y′′ω′ − y′ω′′) ∂

∂y′′

+ (φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′) ∂

∂y′′′
(4.5)

Now, manipulating G[3] on (4.3) yields:

G[3]
(
y′′′ − y′(y′′)4(y)−4

)
= 0 (4.6)

⇒ [ω
∂

∂x
+ φ

∂

∂y
+ (φ− ω′y′) ∂

∂y′
+ (φ′′ − 2y′′ω′ − y′ω′′) ∂

∂y′′

+ (φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′) ∂

∂y′′′
](y′′′ − y′(y′′)4(y)−4)

= 0 (4.7)

Hence, expansion of (4.7) gives:

⇒ ω
∂

∂x

(
y′′′ − y′(y′′)4(y)−4

)
+ φ

∂

∂y

(
y′′′ − y′(y′′)4(y)−4

)
+ (φ′ − ω′y′) ∂

∂y′
[
y′′′ − y′(y′′)4(y)−4

]
+ (φ′′ − 2y′′ω′ − y′ω′′) ∂

∂y′′
[
y′′′ − y′(y′′)4(y)−4

]
+ (φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′) ∂

∂y′′′
[y′′′ − y′(y′′)4(y)−4] = 0 (4.8)

From (4.8) it implies:

ω
∂

∂x
[y′′′ − y′(y′′)4(y)−4](4.8a)

= ω[yiv − y′′(y′′)4(y)−4 − 4(y′′)3y′′′y′(y)−4 + 4(y)−5y′y′(y′′)4]

= ω[yiv − y′′(y′′)4(y)−4 − 4(y′′)3y′′′y′(y)−4 + 4(y)−5y′y′(y′′)4]

= ω[y(iv) − (y′′)5(y)−4 − 4y′(y′′)3(y)−4y′′′ + 4(y′)2(y′′)4(y)−5]

φ
∂

∂y
[y′′′ − y′(y′′)4(y)−4](4.8b)

= φ[0− (0 + 0− 4(y)−5y′(y′′)4)]

= φ[0 + 4(y)−5y′(y′′)4]

= φ[4y′(y′′)4(y)−5]

(φ′ − ω′y′) ∂
∂y′

[y′′′ − y′(y′′)4(y)−4](4.8c)
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= (φ′ − ω′y′)[0− y′′(y′′)4(y)−4]

= (φ′ − ω′y′)[−(y′′)5(y)−4]

(φ′′ − 2y′′ω′ − y′ω′′) ∂

∂y′′
[y′′′ − y′(y′′)4(y)−4](4.8d)

= (φ′′ − 2y′′ω′ − y′ω′′)[0− 4(y′′)3y′′′y′(y)−4]

= (φ′′ − 2y′′ω′ − y′ω′′)[−4y′(y′′)3(y)−4y′′′]

(φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′) ∂

∂y′′′
[y′′′ − y′(y′′)4(y)−4](4.8e)

= (φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′)[1− 0]

= (φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′)

By combining (4.8a) to (4.8e) gives:

ω[y(iv) − (y′′)5(y)−4 − 4y′(y′′)3(y)−4y′′′ + 4(y′)2(y′′)4(y)−5]

+ φ[4y′(y′′)4(y)−5] + (φ′ − ω′y′)[−(y′′)5(y)−4]

+ (φ′′ − 2y′′ω′ − y′ω′′)[−4y′(y′′)3(y)−4y′′′]

+ (φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′) = 0 (4.9)

Thus, from (4.3) gives:

y′′′ − y′(y′′)4(y)−4 = 0

⇒ y′′′ = y′(y′′)4(y)−4 (4.10)

and

y(iv) = (y′′′)
′

hence

y(iv) = (y′(y′′)4(y)−4)
′
= y′′(y′′)4(y)−4 + 4y′(y′′)3y′′′(y)−4 − 4(y)−5y′y′(y′′)4

y(iv) = (y′′)5(y)−4 + 4y′(y′′)3y′′′(y)−4 − 4(y′)2(y′′)4(y)−5 (4.11)

By putting (4.11) into (4.9) gives:

ω[(y′′)5(y)−4 + 4y′(y′′)3y′′′(y)−4 − 4(y′)2(y′′)4(y)−5 − (y′′)5(y)−4
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− 4y′(y′′)3(y)−4y′′′ + 4(y′)2(y′′)4(y)−5]

+ φ[4y′(y′′)4(y)−5] + (φ′ − ω′y′)[−(y′′)5(y)−4]

+ (φ′′ − 2y′′ω′ − y′ω′′)[−4y′(y′′)3(y)−4y′′′]

+ (φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′) = 0

⇒ ω[(y′′)5(y)−4 + 4y′(y′′)3y′′′(y)−4 − 4(y′)2(y′′)4(y)−5 − (y′′)5(y)−4

− 4y′(y′′)3(y)−4y′′′ + 4(y′)2(y′′)4(y)−5]

+ [4y′(y′′)4(y)−5]φ− [(y′′)5(y)−4](φ′ − ω′y′)

− [4y′(y′′)3(y)−4y′′′](φ′′ − 2y′′ω′ − y′ω′′)

+ (φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′) = 0 (4.12)

Further simplification gives:

ω(y′′)5(y)−4 + 4ωy′(y′′)3(y)−4y′′′ − 4ω(y′)2(y′′)4(y)−5

− ω(y′′)5(y)−4 − 4ωy′(y′′)3(y)−4y′′′ + 4ω(y′)2(y′′)4(y)−5

+ 4φy′(y′′)4(y)−4 − φ′(y′′)5(y)−4 + ω′y′(y′′)5(y)−4

− 4φ′′y′(y′′)3(y)−4y′′′ + 8ω′y′(y′′)4(y)−4y′′′

+ 4ω′′(y′)2(y′′)3(y)−4y′′′

+ φ′′′ − 3ω′y′′′ − 3ω′′y′′ − y′ω′′′ = 0 (4.13)

Again,

ω(y)−4(y′′)5 + 4ωy′(y)−4(y′′)3y′′′ − 4ω(y)−5(y′)2(y′′)4 − ω(y)−4(y′′)5

−4ωy′(y)−4(y′′)3y′′′ + 4ω(y)−5(y′)2(y′′)4 + 4φy′(y)−4(y′′)4

−φ′(y)−4(y′′)5 + ω′y′(y)−4(y′′)5 − 4φ′′y′(y)−4(y′′)3y′′′

+8ω′y′(y)−4(y′′)4y′′′ + 4ω′′(y)−4(y′)2(y′′)3y′′′

+φ′′′ − 3ω′y′′′ − 3ω′′y′′ − y′ω′′′ = 0

When simplified, it gives:

4φy′(y)−4(y′′)4 − φ′(y)−4(y′′)5 − 4φ′′y′(y)−4(y′′)3y′′′ + φ′′′
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+ 8ω′y′(y)−4(y′′)4y′′′ + ω′y′(y)−4(y′′)5 − 3ω′y′′′ − 3ω′′y′′

+ 4ω′′(y)−4(y′)2(y′′)3y′′′ − y′ω′′′ = 0 (4.14)

By expressing first, second and third derivatives of ω and φ in terms of partial derivatives

given that:

ω = ω(x, y)

then

d(ω) =
(
∂ω
∂x

)
dx+

(
∂ω
∂y

)
dy

∴ ω′ =
∂ω

∂x
+ y′

∂ω

∂y
(4.15)

ω′′ = d
dx

(ω′) + d
dy

(ω′)y′

ω′′ = d
dx

(
∂ω
∂x

+ y′ ∂ω
∂y

)
+ d

dy

(
∂ω
∂x

+ y′ ∂ω
∂y

)
y′

= ∂2ω
∂x2

+ y′ ∂
2ω

∂x∂y
+ y′′ ∂ω

∂y
+ y′ ∂

2ω
∂x∂y

+ y′2 ∂
2ω
∂y2

+ 0

Simplification yields:

∴ ω′′ = 2y′
∂2ω

∂x∂y
+ y′2

∂2ω

∂y2
+ y′′

∂ω

∂y
+
∂2ω

∂x2
(4.16)

ω′′′ = d
dx

(ω′′) + y′ d
dy

(ω′′)

ω′′′ =
d

dx

(
∂2ω

∂x2
+ 2y′

∂2ω

∂x∂y
+ y′′

∂ω

∂y
+ y′2

∂2ω

∂y2

)
+ y′

d

dy

(
∂2ω

∂x2
+ 2y′

∂2ω

∂x∂y
+ y′′

∂ω

∂y
+ y′2

∂2ω

∂y2

)

=
∂3ω

∂x3
+ 2y′

∂3ω

∂x2∂y
+ 2y′′

∂2ω

∂x∂y
+ y′′′

∂ω

∂y

+ 2y′y′′
∂2ω

∂y2
+ y′

∂3ω

∂x2∂y
+ y′2

∂3ω

∂x∂y2
+ 2y′2

∂3ω

∂x∂y2
+ 0

+ y′y′′
∂2ω

∂y2
+ 0 + y3

∂3ω

∂y3
+ 0
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∴ ω′′′ =
∂3ω

∂x3
+ 3y′

∂3ω

∂x2∂y
+ 3y′′

∂2ω

∂x∂y
+ y′′′

∂ω

∂y

+ 3y′′y′
∂2ω

∂y2
+ y′3

∂3ω

∂y3
+ 3y′2

∂3ω

∂x∂y2
(4.17)

and also

φ = φ(x, y)

then

d(φ) =
(
∂φ
∂x

)
dx+

(
∂φ
∂y

)
dy

∴ φ′ =
∂φ

∂x
+ y′

∂φ

∂y
(4.18)

φ′′ = d
dx

(φ′) + d
dy

(φ′)y′

φ′′ = d
dx

(
∂φ
∂x

+ y′ ∂φ
∂y

)
+ d

dy

(
∂φ
∂x

+ y′ ∂φ
∂y

)
y′

= ∂2φ
∂x2

+ y′ ∂
2φ

∂x∂y
+ y′′ ∂φ

∂y
+ y′ ∂

2φ
∂x∂y

+ y′2 ∂
2φ
∂y2

+ 0

Simplification yields:

∴ φ′′ = 2y′
∂2φ

∂x∂y
+ y′2

∂2φ

∂y2
+ y′′

∂φ

∂y
+
∂2φ

∂x2
(4.19)

φ′′′ = d
dx

(φ′′) + y′ d
dy

(φ′′)

= d
dx

(
∂2φ
∂x2

+ 2y′ ∂
2φ

∂x∂y
+ y′′ ∂φ

∂y
+ y′2 ∂

2φ
∂y2

)
+ y′ d

dy

(
∂2φ
∂x2

+ 2y′ ∂
2φ

∂x∂y
+ y′′ ∂φ

∂y
+ y′2 ∂

2φ
∂y2

)

=
∂3φ

∂x3
+ 2y′

∂3φ

∂x2∂y
+ 2y′′

∂2φ

∂x∂y
+ y′′′

∂φ

∂y
+ y′2

∂3φ

∂x∂y2
+ 2y′y′′

∂2φ

∂y2

+ y′′
∂2φ

∂x∂y
+ y′

∂3φ

∂x2∂y
+ 0 + 2y′2

∂3φ

∂x∂y2
+ 0 + y′y′′

∂2φ

∂y2
+ 0 + y′3

∂3φ

∂y3
+ 0

∴ φ′′′ =
∂3φ

∂x3
+ 3y′

∂3φ

∂x2∂y
+ 3y′′

∂2φ

∂x∂y
+ y′′′

∂φ

∂y
+ 3y′2

∂3φ

∂x∂y2

+ 3y′y′′
∂2φ

∂y2
+ y′3

∂3φ

∂y3
(4.20)

38



By substituting (4.15), (4.16), (4.18), (4.19), (4.20) into (4.14) gives:

4φy′(y)−4(y′′)4 − φ′(y)−4(y′′)5 − 4φ′′y′(y)−4(y′′)3y′′′ + φ′′′

+ 8ω′y′(y)−4(y′′)4y′′′ + ω′y′(y)−4(y′′)5 − 3ω′y′′′ − 3ω′′y′′

+ 4ω′′(y)−4(y′)2(y′′)3y′′′ − y′ω′′′ = 0 (4.21)

Equally :

4φy′(y)−4(y′′)4 −
(
∂φ

∂x
+ y′

∂φ

∂y

)
(y)−4(y′′)5

− 4

(
∂2φ

∂x2
+ 2y′

∂2φ

∂x∂y
+ y′2

∂2φ

∂y2
+ y′′

∂φ

∂y

)
y′(y)−4(y′′)3y′′′

+

(
∂3φ

∂x3
+ 3y′

∂3φ

∂x2∂y
+ 3y′′

∂2φ

∂x∂y
+ y′′′

∂φ

∂y
+ 3y′2

∂3φ

∂x∂y2
+ 3y′y′′

∂2φ

∂y2
+ y′3

∂3φ

∂y3

)
+ 8

(
∂ω

∂x
+ y′

∂ω

∂y

)
y′(y)−4(y′′)4y′′′ +

(
∂ω

∂x
+ y′

∂ω

∂y

)
y′(y)−4(y′′)5

− 3

(
∂ω

∂x
+ y′

∂ω

∂y

)
y′′′ − 3

(
∂2ω

∂x2
+ 2y′

∂2ω

∂x∂y
+ y′2

∂2ω

∂y2
+ y′′

∂ω

∂y

)
y′′

+ 4

(
∂2ω

∂x2
+ 2y′

∂2ω

∂x∂y
+ y′2

∂2ω

∂y2
+ y′′

∂ω

∂y

)
(y)−4(y′)2(y′′)3y′′′

− y′
(
∂3ω

∂x3
+ 3y′

∂3ω

∂x2∂y
+ 3y′′

∂2ω

∂x∂y
+ y′′′

∂ω

∂y
+ 3y′2

∂3ω

∂x∂y2
+ 3y′y′′

∂2ω

∂y2
+ y′3

∂3ω

∂y3

)
= 0 (4.22)

When expanded, it yields:

∴ 4φy′(y)−4(y′′)4 − (y)−4(y′′)5
∂φ

∂x
− (y)−4(y′′)5y′

∂φ

∂y
− 4y′(y)−4(y′′)3y′′′

∂2φ

∂x2

− 8(y′)2(y)−4(y′′)3y′′′
∂2φ

∂x∂y
− 4(y′)3(y)−4(y′′)3y′′′

∂2φ

∂y2
− 4y′(y)−4(y′′)4y′′′

∂φ

∂y

+
∂3φ

∂x3
+ 3y′

∂3φ

∂x2∂y
+ 3y′′

∂2φ

∂x∂y
+ y′′′

∂φ

∂y
+ 3(y′)2

∂3φ

∂x∂y2
+ 3y′′y′

∂2φ

∂y2
+ (y′)3

∂3φ

∂y3

+ y′′′
∂φ

∂y
+ 8y′(y)−4(y′′)4y′′′

∂ω

∂x
+ 8(y′)2(y)−4(y′′)4y′′′

∂ω

∂y

+ y′(y)−4(y′′)5
∂ω

∂x
+ (y′)2(y)−4(y′′)5

∂ω

∂y
− 3y′′′

∂ω

∂x
− 3y′′′y′

∂ω

∂y

− 3y′′
∂2ω

∂x2
− 6y′′y′

∂2ω

∂x∂y
− 3y′′(y′)2

∂2ω

∂y2
− 3(y′′)2

∂ω

∂y

+ 4(y)−4(y′)2(y′′)3y′′′
∂2ω

∂x2
+ 8(y′)3(y)−4(y′′)3y′′′

∂2ω

∂x∂y
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+ 4(y′)4(y)−4(y′′)3y′′′
∂2ω

∂y2
+ 4(y′′)4(y)−4(y′)2y′′′

∂ω

∂y

− y′
∂3ω

∂x3
− 3(y′)2

∂3ω

∂x2∂y
− 3y′y′′

∂2ω

∂x∂y
− 3(y′)3

∂3ω

∂x∂y2

− 3y′′(y′)2
∂2ω

∂y2
− (y′)4

∂3ω

∂y3
− y′y′′∂ω

∂y
= 0 (4.23)

where (4.23) forms an identity in x, y, y′, y′′, y′′′ . Given that ω and φ are functions in

x and y alone, by equating the combinations of coefficients of the powers of y′, y′′, y′′′ to

zero, it yields:

(y′)4(y′′)3y′′′ : 4(y)−4
∂2ω

∂y2
= 0 (4.24)

(y′)3(y′′)3y′′′ : 8(y)−4
∂2ω

∂x∂y
− 4(y)−4

∂2φ

∂y2
= 0 (4.25)

(y′)2(y′′)3y′′′ : 4(y)−4
∂2ω

∂x2
− 8(y)−4

∂2φ

∂x∂y
= 0 (4.26)

(y′)1(y′′)3y′′′ : −4(y)−4
∂2φ

∂x2
= 0 (4.27)

By integrating (4.24):

4(y)−4 ∂
2ω
∂y2

= 0

⇒ ∂2ω
∂y2

= 0

∂ω
∂y

= A1

∴ ω = A1y + A2 (4.28)

where A1 and A2 are arbitrary functions of x . By substituting (4.28) into (4.25) and

then solving gives;

8(y)−4 ∂2ω
∂x∂y
− 4(y)−4 ∂

2φ
∂y2

= 0

⇒ 2 ∂2ω
∂x∂y
− ∂2φ

∂y2
= 0

2∂A1

∂x
− ∂2φ

∂y2
= 0
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⇒ ∂2φ
∂y2

= 2A′1

⇒ ∂φ
∂y

= 2A′1y + A3

∴ φ = A′1y
2 + A3y + A4 (4.29)

where A3 and A4 are arbitrary functions of x. By substituting (4.28), (4.29) into (4.26)

yields:

4(y)−4 ∂
2ω
∂x2
− 8(y)−4 ∂2φ

∂x∂y
= 0

⇒ ∂2ω
∂x2
− 2 ∂2φ

∂x∂y
= 0

⇒ −2 ∂
∂x

(2A′1y + A3) + (A′′1y + A′′2) = 0

⇒ −2(2A′′1y + A′3) + A′′1y + A′′2 = 0

⇒ −4A′′1y − 2A′3 + A′′1y + A′′2 = 0

∴ 3A′′1y + 2A′3 − A′′2 = 0 (4.30)

By equating the coefficients of powers of y0 and y1 to zero in (4.30):

y1 : 3A′′1 = 0 (4.31)

y0 : 2A′3 − A′′2 = 0 (4.32)

By substituting (4.28), (4.29) into (4.27):

−4(y)−4 ∂
2φ
∂y2

= 0

−4(y)−4 ∂2

∂y2
(A′1y

2 + A3y + A4) = 0

−4(y)−4(A′′1y
2 + A′′3y + A′′4) = 0

∴ A′′1(y)−2 + A′′3(y)−3 + A′′4(y)−4 = 0 (4.33)

By equating the coefficients of powers of y−4, y−3 and y−2 to zero:

y−4 : A′′4 = 0 (4.34)

41



y−3 : A′′3 = 0 (4.35)

y−2 : A′′1 = 0 (4.36)

By solving (4.31):

⇒ A′′1 = 0

Then

A′1 = B1

Hence

∴ A1 = B1x+B2 (4.37)

Now taking (4.35) and solving:

⇒ A′′3 = 0

Then

A′3 = B3

∴ A3 = B3x+B4 (4.38)

Taking (4.32) and solving:

2A′3 − A′′2 = 0

⇒ A′′2 = 2A′3

Thus

A′′2 = 2B3 (Since A′3 = B3 )

A′2 = 2B3x+B5

∴ A2 = B3x
2 +B5x+B6 (4.39)

From (4.34):

⇒ A′′4 = 0
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Thus

A′4 = B7

∴ A4 = B7x+B8 (4.40)

where B1, B2, B3, B4, B5, B6, B7, B8 are arbitrary constants. From

ω = A1y + A2

and substituting A1 and A2 :

⇒ ω = (B1x+B2)y + (B3x
2 +B5x+B6)

∴ ω = B1xy +B2y +B3x
2 +B5x+B6 (4.41)

Again, substituting (4.34), (4.37), (4.40) into (4.29): From

φ = A′1y
2 + A3y + A4

then by substituting A1, A3 and A4 gives:

∴ φ = (B1x+B2)
′y2 + (B3x+B4)y +B7x+B8 (4.42)

Now the infinitesimal generator G is of the form:

G = ω ∂
∂x

+ φ ∂
∂y

By substituting ω and φ , this form is then given as:

G = (B1xy +B2y +B3x
2 +B5x+B6)

∂
∂x

+ (B1y
2 +B3xy +B4y +B7x+B8)

∂
∂y

∴ G = B1

(
xy

∂

∂x
+ y2

∂

∂y

)
+B2

(
y
∂

∂x

)
+B3

(
x2

∂

∂x
+ xy

∂

∂y

)
+B4

(
y
∂

∂y

)
+ B5

(
x
∂

∂x

)
+B6

(
∂

∂x

)
+B7

(
x
∂

∂y

)
+B8

(
∂

∂y

)
(4.43)

which is eight parameter symmetry. Any m− parameter can be separated into m− one

parameter symmetry by choosing certain parameters for particular values. Initially it is

set such that one parameter equal to one and other equal to zero in that order. Using
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(4.43) it can generate an eight− one parameter symmetry given by:

G1 = ∂
∂x

G2 = ∂
∂y

G3 = x ∂
∂x

G4 = y ∂
∂x

G5 = y ∂
∂y

G6 = x ∂
∂y

G7 = xy ∂
∂x

+ y2 ∂
∂y

G8 = x2
∂

∂x
+ xy

∂

∂y
(4.44)

[G1, G3] = [G1G3]− [G3G1]

= ∂
∂x

(
x ∂
∂x

)
− x ∂

∂x

(
∂
∂x

)
= ∂

∂x
+ x ∂2

∂y∂x
− x ∂2

∂x∂y

= ∂
∂x

= G1

[G1, G6] = [G1G6]− [G6G1]

= ∂
∂x

(
x ∂
∂y

)
− x ∂

∂y

(
∂
∂x

)
= ∂

∂y
+ x ∂2

∂x∂y
− x ∂2

∂y∂x

= ∂
∂y

= G2

[G1, G7] = [G1G7]− [G7G1]

= ∂
∂x

(
xy ∂

∂x
+ y2 ∂

∂y

)
−
(
xy ∂

∂x
+ y2 ∂

∂y

)
∂
∂x

= y ∂
∂x

+ xy ∂2

∂x∂y
− xy ∂2

∂x2
− y2 ∂2

∂y∂x

[G2, G4] = [G2G4]− [G4G2]

= ∂
∂y

(
y ∂
∂x

)
− y ∂

∂x

(
∂
∂y

)
= ∂

∂x
+ y ∂2

∂y∂x
− y ∂2

∂x∂y
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= ∂
∂x

= G1

[G2, G5] = [G2G5]− [G5G2]

= ∂
∂y

(
y ∂
∂y

)
− y ∂

∂y

(
∂
∂y

)
= ∂

∂y
+ y ∂2

∂y2
− y ∂2

∂y2

= ∂
∂y

= G2

[G2, G8] = [G2G8]− [G8G2]

= ∂
∂y

(
x2 ∂

∂x
+ xy ∂

∂y

)
−
(
x2 ∂

∂x
+ xy ∂

∂y

)
∂
∂y

= x2 ∂2

∂y∂x
+ x ∂

∂y
+ xy ∂2

∂y2
− x2 ∂2

∂x∂y
− xy ∂2

∂y2

= x ∂
∂y

= G6

[G3, G4] = [G3G4]− [G4G3]

= x ∂
∂x

(
y ∂
∂x

)
− y ∂

∂x

(
x ∂
∂x

)
= yx ∂2

∂x2
− y ∂

∂x
− xy ∂2

∂x2

= −y ∂
∂x

= −G4

[G3, G5] = [G3G5]− [G5G3]

= x ∂
∂x

(
y ∂
∂y

)
− y ∂

∂y

(
x ∂
∂x

)
= yx ∂2

∂y∂x
− xy ∂2

∂x∂y

= 0

[G3, G6] = [G3G6]− [G6G3]

= x ∂
∂x

(
x ∂
∂y

)
− x ∂

∂y

(
x ∂
∂x

)
= x ∂

∂y
+ x2 ∂2

∂x∂y
− x2 ∂2

∂y∂x

= x ∂
∂y

= G6

[G3, G7] = [G3G7]− [G7G3]

= x ∂
∂x

(
xy ∂

∂x
+ y2 ∂

∂y

)
−
(
xy ∂

∂x
+ y2 ∂

∂y

) (
x ∂
∂x

)
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= xy ∂
∂x

+ x2y ∂2

∂x2
+ y2x ∂2

∂x∂y
− xy ∂

∂x
− x2y ∂2

∂x2
− xy ∂

∂x
− x2y ∂2

∂x2
− xy2 ∂2

∂y∂x

= −xy ∂
∂x
− x2y ∂2

∂x2

[G4, G5] = [G4G5]− [G5G4]

= y ∂
∂x

(
y ∂
∂y

)
− y ∂

∂y

(
y ∂
∂x

)
= y2 ∂2

∂x∂y
− y ∂

∂x
− y2 ∂2

∂y∂x

= −y ∂
∂x

= −G4

[G4, G6] = [G4G6]− [G6G4]

= y ∂
∂x

(
x ∂
∂y

)
− x ∂

∂y

(
y ∂
∂x

)
= y ∂

∂y
+ xy ∂2

∂x∂y
− x ∂

∂x
− yx ∂2

∂y∂x

= y ∂
∂y
− x ∂

∂x

[G4, G8] = [G4G8]− [G8G4]

= y ∂
∂x

(
x2 ∂

∂x
+ xy ∂

∂y

)
−
(
x2 ∂

∂x
+ xy ∂

∂y

) (
y ∂
∂x

)
= 2xy ∂

∂x
+ x2y ∂2

∂x2
+ y2 ∂

∂y
+ xy2 ∂2

∂x∂y
− yx2 ∂2

∂x2
− xy ∂

∂x
− y2x ∂2

∂y∂x

= xy ∂
∂x

+ y2 ∂
∂y

= G7

[G5, G7] = [G5G7]− [G7G5]

= y ∂
∂y

(
xy ∂

∂x
+ y2 ∂

∂y

)
−
(
xy ∂

∂x
+ y2 ∂

∂y

)(
y ∂
∂y

)
= xy ∂

∂x
+ xy2 ∂2

∂y∂x
+ 2y2 ∂

∂y
+ y3 ∂2

∂y2
− y2x ∂2

∂x∂y
− y2 ∂

∂y
− y3 ∂2

∂y2

= xy ∂
∂x

+ y2 ∂
∂y

= G7

[G6, G8] = [G6G8]− [G8G6]

= x ∂
∂y

(
x2 ∂

∂x
+ xy ∂

∂y

)
−
(
x2 ∂

∂x
+ xy ∂

∂y

)(
x ∂
∂y

)
= x3 ∂2

∂y∂x
+ x2 ∂

∂y
+ x2y ∂2

∂y2
− x2 ∂

∂y
− x3 ∂2

∂x∂y
− x2y ∂2

∂y2

= 0

Now after the above calculations, the non-zero Lie brackets are given as follows:

[G1, G3] = G1

[G1, G6] = G2
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[G2, G4] = G1

[G2, G5] = G2

[G2, G8] = G6

[G3, G4] = −G4

[G3, G6] = G6

[G4, G5] = −G4

[G4, G8] = G7

[G5, G7] = G7

The process of finding the symmetries of ordinary differential equations is highly system-

atic. Thus let

S1 = ∂
∂x

S3 = x ∂
∂x

which are the Lie solvable algebra of the admitted eight−one parameter symmetry (4.44).

By solving using prolongation:

G[0] = ω ∂
∂x

+ φ ∂
∂y

G[1] = G[0] + (φ′ − ω′y′) ∂
∂y′

G[2] = G[1] + (φ′′ − 2ω′y′′ − ω′′y′) ∂
∂y′′

∴ G[3] = G[2] + (φ′′′ − 3ω′y′′′ − 3ω′′y′′ − ω′′′y′) ∂

∂y′′′
(4.45)

Illustration of Differential Invariant (I)

Consider the third order prolongation for the operator:

G = S = ω ∂
∂x

+ φ ∂
∂y

If

S1 = ∂
∂x

it follows that :

S
[0]
1 = 1 • ∂

∂x
+ 0 • ∂

∂y
( Since ω = 1 and φ = 0 )
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S
[0]
1 = 1 • ∂

∂x
+ 0

∴ S
[0]
1 = ∂

∂x

S
[1]
1 = S

[0]
1 + (φ′ − ω′y′) ∂

∂y′

S
[1]
1 = S

[0]
1 + (0− 0 • y′) ∂

∂y′

= S
[0]
1 + 0 • ∂

∂y′

= S
[0]
1

∴ S
[1]
1 = ∂

∂x

S
[2]
1 = S

[1]
1 + (φ′′ − 2ω′y′′ − ω′′y′) ∂

∂y′′

S
[2]
1 = S

[1]
1 + (0− 2 • 0 • y′′ − 0 • y′) ∂

∂y′′

= S
[1]
1 + 0 • ∂

∂y′′

= S
[1]
1

∴ S
[2]
1 = ∂

∂x

S
[3]
1 = S

[2]
1 + (φ′′′ − 3ω′y′′′ − 3ω′′y′′ − ω′′′y′) ∂

∂y′′′

S
[3]
1 = S

[2]
1 + (0− 3 • 0 • y′′′ − 3 • 0 • y′′ − 0 • y′) ∂

∂y′′′

= S
[2]
1 + 0 • ∂

∂y′′′

= S
[2]
1

= ∂
∂x

Hence

∴ S
[3]
1 = 1 • ∂

∂x
+ 0 • ∂

∂y
(4.46)

By solving for the characteristic:

dx

1
=
dy

0
(4.47)

dy = 0

and integrating yields the differential invariant:

y = U (4.48)

where U is a constant, a function of x .
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Illustration of Differential Invariants (II)

Consider the third order prolongation of the operator:

G = S = ω ∂
∂x

+ φ ∂
∂y

If

S3 = x ∂
∂x

it follows that :

S
[0]
3 = x ∂

∂x
+ 0 • ∂

∂y
( Since ω = x and φ = 0 )

S
[0]
3 = x ∂

∂x
+ 0

∴ S
[0]
3 = x ∂

∂x

S
[1]
3 = S

[0]
3 + (φ′ − ω′y′) ∂

∂y′

S
[1]
3 = S

[0]
3 + (0− 1 • y′) ∂

∂y′

= S
[0]
3 − y′ ∂∂y′

∴ S
[1]
3 = x ∂

∂x
− y′ ∂

∂y′

S
[2]
3 = S

[1]
3 + (φ′′ − 2ω′y′′ − ω′′y′) ∂

∂y′′

S
[2]
3 = S

[1]
3 + (0− 2 • 1 • y′′ − 0 • y′) ∂

∂y′′

= S
[1]
3 + (0− 2y′′ − 0) ∂

∂y′′

= S
[1]
3 − 2y′′ ∂

∂y′′

∴ S
[2]
3 = x ∂

∂x
− y′ ∂

∂y′
− 2y′′ ∂

∂y′′

S
[3]
3 = S

[2]
3 + (φ′′′ − 3ω′y′′′ − 3ω′′y′′ − ω′′′y′) ∂

∂y′′′

S
[3]
3 = S

[2]
3 + (0− 3 • 1 • y′′′ − 3 • 0 • y′′ − 0 • y′) ∂

∂y′′′

= S
[2]
3 + (0− 3y′′′ − 0− 0) ∂

∂y′′′

= S
[2]
3 − 3y′′′ ∂

∂y′′′

Hence

∴ S
[3]
3 = x

∂

∂x
− y′ ∂

∂y′
− 2y′′

∂

∂y′′
− 3y′′′

∂

∂y′′′
(4.49)

By solving for the characteristics:

dy

1
=

dy′

−y′
=

dy′′

−2y′′
=

dy′′′

−3y′′′
(4.50)
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Then integrate (4.50) to get the differential invariants as follows:

(i)dy
1

= dy′

−y′

dy = −dy′

y′

y = − ln |y′|+ ln |C1|

y = ln |C1| − ln |y′|

∴ y = ln |C1

y′
| (4.51)

where C1 is a constant.

(ii) dy
′

−y′ = dy′′

−2y′′

dy′

y′
= 1

2

(
dy′′

y′′

)
ln |y′| = 1

2
ln |y′′|+ ln |C2|

⇒ ln |y′| = ln |y′′| 12 + ln |C2|

ln |y′| = ln |C2||y′′|
1
2

⇒ y′ = C2(y
′′)

1
2

C2 = y′

(y′′)
1
2

= (y′)2

y′′

If

1
C2

= y′′

(y′)2

Let

t1 = 1
C2

∴ t1 =
y′′

(y′)2
(4.52)

where C2 and t1 are constants.

(iii) dy
′

−y′ = dy′′′

−3y′′′

dy′

y′
= dy′′′

3y′′′

dy′

y′
= 1

3

(
dy′′′

y′′′

)
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ln |y′| = 1
3

ln |y′′′|+ ln |C3|

⇒ ln |y′| = ln |y′′′| 13 + ln |C3|

ln |y′| = ln|C3||y′′′|
1
3

⇒ y′ = C3(y
′′′)

1
3

C3 = y′

(y′′′)
1
3

= (y′)3

y′′′

If

1
C3

= y′′′

(y′)3

Let

t2 = 1
C3

∴ t2 =
y′′′

(y′)3
(4.53)

where C3 and t2 are constants.

(iv) dy′′

−2y′′ = dy′′′

−3y′′′

dy′′

2y′′
= dy′′′

3y′′′

1
2

(
dy′′

y′′

)
= 1

3

(
dy′′′

y′′′

)
1
2

ln |y′′| = 1
3

ln |y′′′|+ ln |C4|

⇒ ln |y′′| 12 = ln |y′′′| 13 + ln |C4|

ln |y′′| 12 = ln |C4||y′′′|
1
3

⇒ (y′′)
1
2 = C4(y

′′′)
1
3

C4 = (y′′)
1
2

(y′′′)
1
3

= (y′′)3

(y′′′)2

If

1
C4

= (y′′′)2

(y′′)3

Let

t3 = 1
C4
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∴ t3 =
(y′′′)2

(y′′)3
(4.54)

where C4 and t3 are constants.

By taking (4.52) then:

t1 = y′′

(y′)2

Let

t1 = V

then (4.52) becomes :

∴ V =
y′′

(y′)2
(4.55)

Now reducing (4.2) to first order ODE(Dresner, 1999) yields:

dV
dy

= Dx(V )
Dx(y)

=
Dx

(
y′′

y′2

)
Dx(y)

= y′′′(y′)2

(y′)5
− 2y′y′′y′′

(y′)5

= y′′′

(y′)3
− 2y′′y′′

(y′)4

= y′(y′′)4(y)−4

(y′)3
− 2y′′y′′

(y′)2(y′)2

dV
dy

= y′(y′′)4(y)−4

(y′)3
− 2(y′′)(y′′)

(y′)2(y′)2

dV
dy

= (y′′)4(y′)−2(y)−4 − 2(y′′)(y′′)
(y′)2(y′)2

From (4.48) and (4.55) through substitution leads to :

dV
dy

= (y′′)4(y′)−2(y)−4 − 2V 2

∴
dV

dy
+ 2V 2 = (y′′)4(y′)−2(y)−4 (4.56)

Then (4.56) is of the form:

dV

dy
+ P (y)V = Q(y) (4.57)

implying that it has been managed to reduce a third order equation (4.2) to a simple first

order linear equation (4.56) that is easily solvable by other known simpler methods. If
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P (y) = 2V

and

Q(y) = (y′′)4(y′)−2(y)−4

Then (4.2) reduces to (4.57) which can be easily integrated using integrating factors given

by:

I(y)

Thus

I(y) = e
∫
P (y)dy (4.58)

I(y) = e
∫
2V dy

I(y) = e2
∫
V dy

= e
2
∫ y′′

(y′)2
dy

= e2 ln |y
′|2+C

= eln |y
′|4•eC

= Meln |y
′|4 ( If eC = M )

= eln |y
′|4 (Since C = 0, M = 1) then

I(y) = eln |y
′|4

= (y′)4

where C and M are constants. From the form :

V =
1

I(y)

∫
(y′)4Q(y)dy (4.59)

Then it follows that :

V = 1
(y′)4

∫
(y′)4[(y′′)4(y′)−2(y)−4]dy

whose simplification leads to :

∴ V =
1

(y′)4

∫
(y′′)4(y′)2(y)−4dy (4.60)

which completes the process of integration hence (4.60) is the simple first order form of
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the required mathematical solution of the special type wave equation (4.2) namely :

y′′′ − y′
(
y′′

y

)4

= 0

4.3 The General Solution of Nonlinear Wave Equation of Third Order

Now consider the general form of the given wave equation (4.2) as:

U ′′′ − U ′
(
U ′′

U

)4

= 0 (4.61)

Again by taking (4.48) and (4.52) such that:

y = U

and

t1 = U ′′

(U ′)2

Let t1 = V then (4.52) becomes :

∴ V =
U ′′

(U ′)2
(4.62)

Now reducing (4.61) to first order ODE(Dresner, 1999) yields:

dV
dU

= Dx(V )
Dx(U)

=
Dx

(
U′′
U′2

)
Dx(U)

= U ′′′(U ′)2

(U ′)5
− 2U ′U ′′U ′′

(U ′)5

= U ′′′

(U ′)3
− 2U ′′U ′′

(U ′)4

= U ′(U ′′)4(U)−4

(U ′)3
− 2U ′′U ′′

(U ′)2(U ′)2

dV
dU

= U ′(U ′′)4(U)−4

(U ′)3
− 2(U ′′)(U ′′)

(U ′)2(U ′)2

dV
dU

= (U ′′)4(U ′)−2(U)−4 − 2( U ′′

(U ′)2
)( U ′′

(U ′)2
)

From (4.48) and (4.62) through substitution leads to :

dV
dU

= (U ′′)4(U ′)−2(U)−4 − 2V 2

∴
dV

dU
+ 2V 2 = (U ′′)4(U ′)−2(U)−4 (4.63)
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Then (4.63) is of the form:

dV

dU
+ P (U)V = Q(U) (4.64)

implying that it has been managed to reduce a third order equation (4.61) to a simple

first order linear equation (4.63) that is easily solvable by other known simpler methods.

If

P (U) = 2V

and

Q(U) = (U ′′)4(U ′)−2(U)−4

Then (4.61) reduces to (4.64) which can be easily integrated using integrating factors

given by:

I(U)

Thus

I(U) = e
∫
P (U)dU (4.65)

I(U) = e
∫
2V dU

I(U) = e2
∫
V dU

= e
2
∫

U′′
(U′)2

dU

= e2 ln |U
′|2+C

= eln |U
′|4•eC

= Meln |U
′|4 ( If eC = M)

= eln |U
′|4 (Since C = 0, M = 1) then

∴ I(U) = eln |U
′|4

= (U ′)4

where C and M are constants. From the form :

V =
1

I(U)

∫
(U ′)4Q(U)dU (4.66)
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Then it follows that :

V = 1
(U ′)4

∫
(U ′)4[(U ′′)4(U ′)−2(U)−4]dU

whose simplification leads to :

∴ V =
1

(U ′)4

∫
(U ′′)4(U ′)2(U)−4dU (4.67)

hence (4.67) is a simple first order form of the required general solution of the special

type wave equation (4.61) namely :

U ′′′ − U ′
(
U ′′

U

)4

= 0
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CHAPTER 5

SUMMARY,CONCLUSION AND RECOMMENDATIONS

5.1 Summary

The Mathematical Solution of Nonlinear Wave Equation of Third Order

This study looked at a special case of a wave equation, that is, a third order first degree

nonlinear, nonhomogeneous ODE of fourth degree in second derivative of the form (4.2)

namely :

y′′′ − y′
(
y′′

y

)4

= 0 (5.1)

and whose mathematical solution is:

V =
1

(y′)4

∫
(y′′)4(y′)2(y)−4dy (5.2)

To obtain this solution (5.2), the method of Lie symmetry was employed because unlike

other numerical methods which give solutions that are approximations, it yields exact

solutions to given wave equations. In the Lie symmetry analysis while manipulating

(5.1), the following were applied: laws of indices together with the removal of the fractions

in order to get the transformation equation, the third extension of G[3] , substitutions,

expansions, simplifications, the partial derivatives, integration, identities, infinitesimal

generators, one-parameter symmetry, non-zero Lie brackets, Lie solvable algebra, third

order prolongation of the operator, solving for the characteristics, differential invariants

and the reduction of third order to first order ODE. The simple first order ODE is easily

solvable using other available methods like integration.

The General Solution of Nonlinear Wave Equation of Third Order

In this research work, after considering (5.1), which is a general wave equation similar

to the special wave equation that was manipulated to obtain the mathematical solution
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(5.2), then the general wave equation was of the form (5.3):

U ′′′ − U ′
(
U ′′

U

)4

= 0 (5.3)

where U is a function of x and yielded a general solution of the form (5.4):

V =
1

(U ′)4

∫
(U ′′)4(U ′)2(U)−4dU (5.4)

The Lie symmetry analysis was used to obtain the general solution since it leads to

an exact solution. To get this general solution, the study employed the following: the

Lie groups of transformations, infinitesimal transformations, one-parameter Lie group,

infinitesimal generators, Lie algebras, prolongations, variation symmetries, differential

invariants, Lie point symmetries, integrating factor and reduction of third order to first

order which is easier to solve using other methods.

5.2 Conclusion

The wave phenomena has created the world into the so called electrical brain waves! Wave

phenomena affect lives in many ways such that locomotion to surfers is furnished by water

waves. Many forms of nonlinear ordinary differential equations occur in the analysis of

problems found in physics, engineering, chemistry and biology. The main focus was to

determine a mathematical solution of the nonlinear wave equation of third order using

Lie symmetry analysis. The aim was not to study a particular solution but to acquaint

you with Lie symmetry procedures that are common to these types of problems. In real

life situations, the occurrence of earthquake tremors and sea or ocean waves in most cases

often do great damage to humanity and properties. For example, the shock waves from the

jet planes rattle and break window panes. The wave theory, the nature of the waves and

the industrial application of their properties, are growing at an explosive rate. Scientists

are supposed to put some mechanisms in place so as to minimize large scale damages.

They need to have knowledge about water waves in terms of their nature in order to tell

the time they are likely to happen and the extent of their destruction. The important
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parameters involving waves are the amplitude (maximum displacement), velocity (speed),

frequency, wavelength and the periodic time. The decrease in velocity as waves approach

a shallow region is consistent with the behavior of ocean waves. By taking the peaks and

troughs of water waves as points sitting over deeper and shallower parts respectively, the

wave velocity at the peaks is higher than that at the troughs. This causes the crests to

break into a splash as they approach the shallows of the continental shelf. In sensitive

sonar equipment, which use high-frequency sound waves, permits the fast, economical, and

accurate charting of the floor of the oceans, and also detects the presence of submarines

and schools of fish. Internal waves which are large have been found far below the surface

of the sea. The exploration of the seas and oceans is becoming important because as

the worlds population grows, man must turn his attention to the waters that cover four-

fifths of the earths surface. Ground waves whether created by explosives or earthquakes,

are used in geology and geophysics for oil exploration and for investigating properties of

the earths core. In chemistry, waves determine the crystalline structure, and in physics

they explore atoms and subatomic particles. For a radio operator or hi-fi enthusiast and

you would like design computer devices or television equipment or work as a theoretical

or experimental physical scientist, you need to understand the wave theory. Since the

manipulation of equation (1.48) yielded a mathematical solution then the first objective

was achieved. This implies that a solution exists. This solution can be worked out using

other simpler known methods like integration in order to get a particular solution.

In the second objective, the interest was to have a general solution of the general form

that could be used by other mathematicians, engineers and researchers in science to solve

specified wave equations. This forms the basis of future predictions which aim at saving

human loss of life and properties. For example once the range of the amplitude of a

particular wave across the ocean has been calculated, a decision can be made to clear the

vicinity including human evacuation in order to minimize damages. Again, if the velocity

range of a given wave is established and its strength known then the damages such a

wave could cause may be estimated and safety measures taken promptly. Also from the
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velocity of a wave, time taken to reach a particular point and area can be evaluated and

the required mechanisms put in place early enough before such a wave reaches such a

point to cause disaster. Hence the objective was highly achieved.

5.3 Recommendations

It is wished that further research may attempt the solution of similar wave equation but

of fourth or higher order nonlinear ordinary differential equation since there are no known

researches that have been carried out lately. There is also a need for other researchers

in the field of technology to develop a computer package which can be used to determine

solutions to similar nonlinear ordinary differential equations in future because the current

methods are very long and tedious.
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