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ABSTRACT
The investigation of Norm-attainability in Hilbert spaces and derivations has been done for quite
long. Norm-attainability conditions for elementary operators such basic elementary operator and
Jordan elementary operator has been done and results obtained . But, norm-attainable conditions
for derivations in Banach-algebras and norm-estimates that is upper and lower norm-estimates for
derivations in Banach algebras has not been done. Objectively this study will: Establish norm-
attainability conditions for derivations in Banach-algebras, determine upper and lower norm
estimates for norm-attainable derivations in Banach algebras. The research methods used
involvees use inequalities well known such as Cauchy-Schwarz, Triangle,H" olders and Bessel’s
inequality. Technically, Direct sum decomposition, Polar decomposition and Tensor product
methods were used. Results obtained from this study will be useful in quantum mechanics and in

integration.
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Chapter 1

INTRODUCTION

1.1 Mathematical background

Banach algebras are key in several studies in mathematics and the ad-
vancement in both trivial and non-trivial cases in mathematics and quan-tum
mechanics. The norm of a derivation was first introduced by Stampfli [87],
who determined the inner derivation o1o : Ag — ToAg — AgTo Which acts on
Banach algebra B(H) on Hilbert space H. Further, Joto J5inf2 JTo — Alp J
for every complex A was shown. For a normal T , then Jo1o / can be
expressed as the geometry of the spectrum of Tp. Johnson [37] established
method which apply to a uniform convex spaces with a large class, that is the
formula JoT /s false in I" and Lr(O, 1) 1 < r < oo, r =/2. Johnson [36] found
that B(H) derivation is a map ¢ : B(H) — B(H) with (P S) = P 6(S) + o(P )S
P, S € B(H). Such derivations are necessarily continuous and if S € B(H)

then og(P ) = P S — SP is a derivation in B(H).

Gajendragadka [27] was concerned with computation of norm of deriva-



tion and Von-Neumann algebra. Specifically when the Von-Neumann
algebra act on separable Hilbert space H, K € U was proved then dk a
derivative induced by K, then ok |[UJ= 2 inf JK — M}, M in the centre U.
Therefore, Anderson [5] in his investigation on normal derivation the
operators A, C  B(H) were proved that A is normal if AC commutes, for
every Y € B(H), Joa(Y ) + CJ > JCJ. Therefore, the inequality showed that
the kernel and the range dp is orthogonal to da which is commutation of {A},
of A. Kyle [38] examined the numerical-range of in-ner derivation and the
element generating the relationship between them. Kyle [39] studied on
norms of inner derivations and used their properties and concluded that a C*
algebra is a closed sub-set of entire derivation(s) which forms the inner
derivations set and obtained the result which was a converse by Stampfli
[87].

Charles and Steve [16] answered the question when X = K by struc-ture
characterization of compact derivations of C™algebras. Moreover, the
structure of weak compact derivations of C*-algebras was determined and as
immediate corollaries of these results, conditions that were nec-essary and
sufficient were obtained so that C*algebras admits non-zero compact or
weakly compact derivation. Stampfli [88] studied operators on Hilbert space
and their properties inducing a derivation whose closure is self-adjoint after
range such operators are termed D-symmetric and then characterized
compact D-symmetric operators. Further, considera-tion was given to normal
derivations and then presented an irreducible, not essential normal D-
symmetric operators as an example. Erik [23] established that any C*-algebra
F on a Hilbert space H with cyclic vec-tor whose derivative property ¢ of F

into B(H) an operator y existed in



B(H) : VfeF of) =1y, f1=2/—f).

Mecheri [53] established that T (X) is linear for a m-linear derivation and
hence, the topology of Von-Neumann algebra X of type | is automatically
continuous in measure with center m and the semi-finite trace ¢ which is
normal is faithful. Therefore, K(X) is the algebra of all z-measurable
operators affiliated with X. Mathieu [48] proved that for bounded deriva-
tions that are non-zero then the product of two prime C™algebras are
bounded. In Volker [92] two automatic continuity problems for deriva-tions
on commutating Banach algebras were discussed : (a) Derivation on a
commutative algebra is mapped onto the radical, and: (b) Banach algebras

are continuous on semiprime derivations. It was proved that

(b) implies (a). Furthermore, (b) proved that for special cases Banach
algebras are reduced to a small class and also similar results were given on
epimorphisms. In fact, it was shown that semisimple Banach algebras were
characterized with no topologically nilpotent element other than zero being
among the commutative Banach algebras; known examples of discontinuous
derivations on commutating Banach algebras depended ma-jorly on the
existing nontrivial nilpotent elements which was on a general-ized derivation
of semiprime Banach algebra and that nilpotent elements are continuous on a

commutative Banach algebra without nontrivial.

Bresar, Zalar [13] showed that a Jordan =derivation is the map da(x) = ax —
x"a for fixed a € U; hence, the derivation is inner and the follow-ing are the
results obtained. Douglas [21] continued the study of Ws(N) which was
considerably more amenable where Archbold [1] defined the smallest

numbers to be [0, o] and introduced two constants W (N) and Wx(N) : d(n,
Q(N)) < W (N)/D(n, N)/ ¥n eN and d(n, Q(N)) <

3



Ws(N)/D(n, N)/ ¥'n =n* e N. Dutta, Nath, Kalita [22] showed that if a1 and
ap are o-deriyation and & -derivation on (T, y) and (T y,) and an arbitrary
elementn= ~1y; ©x; of (T, 7) ©,(T_.), then a derivation D on & &’

exists in (7, 7) ©p(T ) satisfy a(n) = “1[(oayr) Oxq +
®

y1 (a2x1)] in which many enlightening properties were possessed. Fur-
thermore, the validity of the results was investigated on Jo = fJo1/* e and

sp(a) = sp(a1) + sp(a1).

Rajendra, Kalyan [77] showed that for the nth order commutator

[[[kB), Y] Y] ..., Y] aformula was obtained in terms of the Frechet
derivatives Smk(B) in which the formula illustrated was used to obtain
bounds for norms of a generalized commutator k(B)Y — Y k(B) and their
higher order analogues. In Joel [35] the numerical range of 2 x 2 matrices
was determined, the convex of the numerical range for any Hilbert space
operator was established by Toeplitz-Hausdorff theorem and relation of
numerical-range to that of spectrum was discussed. Further, closure of the
numerical-range is contained in the spectrum, the intersection of closures of
the numerical-range of all operators were asserted by Hildebrandt’s theorem
that are similar to operator D was given precisely and discussed the convex
hull of the spectrum of D. Considering results on special cases Blanco,

Boumazgour, Ransford [12] established that JP XQ + QXP /> JP/JIQ/.

Chi-Kwong [17] established that for a n x n matrix X, the numerical range W
(X) has many properties which can be used to locate eigenval-ues, to obtain
norm bounds algebraic and analytic properties were de-duced which will

help in finding the dilations of simple structure. The



numerical radius of Y defined as w(Y ) = maxpew (v M| and (Y ) =
mingew (v )IK| is the distance of W (X) to the origin which is related to
numerical range. w(X) and w7 (X) are useful quantities in studying
convergence, stability, perturbation and approximation problems. Let the
linear operators Xj and Yj, 1 <i < n act on separable Hilbert space H. Hong-
Ke, Yue-ging [33] proved that sup{ Znizl RiYSi/:Y eBH), JY J<1} =
sup{ ni:1 RiT Si/: UU* =T "U =1, U eB(H)}. Therefore, there exists an
%erator Yk which proved that JY¢/ = 1 im-plying / ni:1 RiYkSi/ = sup{

nizl RiY Si/: Y €B(H), /¥ J/<1} only if there exists a unitary Ug € B(H)
sothat / i1 RiUgSi/= sup{ =1 RiY Si/: Y €B(H), J¥ /<1}.

Nyamwala and Agure [54] proved that JAXM +M XM/ = 2JAJ/M/ and in
this study it was shown that JAJMJ < JAXM+AXM/J < 2/AM/. In
Nyamwala [55] the symmetry of a multiplication operator norm which is
two-sided was calculated as Tp gk X = P XQk + QxXP defined on a C™-
algebra C'P, Qk, 1 generated by P and Qg for an idempotent X related to P
and Q. In addition, Okelo, Agure and Ambogo [61] established the Jordan-
elementary operator norm Uy, ,n : B(H) — B(H) givenas Uy ,n=M Y N +N
Y M, VY €B(H) and M, N in B(H), showing that Uy ,N /> /MJ/N/ and
then characterized the norm-attainable operators using this norm. Okelo [68]
investigated that ideals of norm-attainable elements implemented by inner
derivations of a C*algebra has relation to primitive ideals. Since there is a
relationship between the constants A(¢) and Ag¢ ideals of C*algebras and

ideals that are primitive then related results were given.

Okelo, Agure and Oleche [66] gave results on necessary and sufficient con-



ditions for norm-attainable operators also studied norm-attainable op-erators
and generalized derivations. Okelo [65] extended the work by presenting
new results on conditions that are sufficient and necessary for norm-
attainable operators on Hilbert space, elementary operator and gen-eralized
derivation was established. Further, Okelo [65] established that a unit vector
exists 1 e H, JAJ = 1 so that JSi) = /S/ with SA, 2 = 5. Hoger [32] showed
that every Jordan derivation of the trivial extension of A by M, under some
conditions, is the summation of the derivative and anti-derivative. Okelo,
Ongati, Obogi [62] studied norm-attainable operators that are convergent and

established projective tensor norm via norm-attainable operators.

Wickstead [94] showed that if atomic Banach lattice Z having a norm order
that is continuous, X, Y T " and My y are operators on T r(Z) given as My y
(A) = XAY, then Mxy Jr = XY Jr with no real > 0 hence Mxy Jr =
BIXJIN  Jr. Okelo [72] outlined the theory of self-adjoint and norm-
attainable operators then presented norms of operators in Hilbert spaces.

Sayed, Madjid, Hamid [80] proved that for a linear map

A U — U, AXY ) = AX)Y +AX(Y ) for each X, Y € U is a derivation, then
any two derivations A and Aona C™-algebra U exists a derivation

5 €U such that AA = 52 if and only if either A=0orA=fA

for any f € C. Clifford [18] studied hypercyclic generalized derivations
acting on separable ideals of operators then identified concrete examples and
established some conditions that are necessary and sufficient for their
hypercyclicity. Particular Banach algebras acted on by the dynamics of

elementary operators were considered.

Oyake, Okelo and Ongati [74] characterized inner derivations in Banach



algebra and investigated inner derivation properties that are implemented by
norm-attainable operators such as measurability, normality continu-ity,
linearity, trace and spectra of inducing operator and determined the norms.
The result showed that the derivations admitted tensor norms of operators.

Kinyanjui [42] characterized norm-attainable elementary op-erator and
showed if operators M, P and dy ,p be norm-attainable, then oy ,p is

normally represented. In Okelo and Aminer [67] norm inequali-ties of new
matrices that are norm-attainable operators, were presented as well as
mapping on matrices were characterized. Okelo and Aminer [67] completely
characterized norms that are bounded, gave the extension of orthogonality
via norm-convergence in N A(H)-classes. Okelo [64] consid-ered orthogonal
and norm-attainable of operators in Banach spaces, gave in details the
characterization and generalizations of norm-attainability and orthogonality.
The conditions that are sufficient and necessary for norm-attainable
operations on a Hilbert space, result on kernel of elemen-tary operators and
the orthogonal range when done by norm-attainable operators in Banach-

spaces were given.

Odero, Agure, Nyamwala [56] showed that the mapping Agr : B(H) — B(H)
is a generalized derivation of two operators that are bounded Q’, R e B(H)
induced by Q' and R were defined by Agr (Y) = Q,Y -Y ’R, therefore, the
norm JAqRr [ = //Q,// + //R,// for all Q’, R e B(H) was given. Okelo and
Mogotu [59] gave norms of commutators of normal op-erators for generalized
inequalities and established the commutations of derivation for orthogonality
and norm inequalities. Okelo [60] character-ized norm-attainable classes in
terms of orthogonality by giving norm-attainability conditions that were

necessary and sufficient for Hilbert



space operators first and the orthogonality result on the kernel and range of
norm-attainable classes in elementary operators, implemented by op-erators
that are norm-attainable were given. Okelo [63] gave conditions for linear
functionals in Banach spaces for norm-attainable operators, el-ementary
operators and non-power operators on H and also for power operators a new
notion of norm-attainability was given and then charac-terized norm-

attainable operators in normed spaces.

Abolfazl [2] determined the norm of inner Jordan *derivations ds : T — ST
— T 'S that act on the Banach algebra B(H). It was shown that Jos/ > 2
supzewo(s) | 7| in which Wo(S) is the maximal numerical range of operator S.
Gyan [28] obtained precisely when zero belongs to maxi-mal numerical
range of composition operators on H and then character-ized the norm-
attainability of derivations on B(H). In Okelo [71] norm-attainability for
hyponormal operators that are compact were character-ized, sufficient
conditions for a compact hyponormal operator that is lin-ear and bounded on
an infinite dimension for a complex Hilbert space to be norm attainable were
given. Further, the structure and other proper-ties of compact hyponormal
operators when they are self-adjoint, normal and norm attainable with their

commutators were discussed in general.

Lumer [46] obtained a sharp estimate not only from |sp(R)| = spectral radius

of R but also [sp(R)| in terms of sup(]X(R)|, |X(Rn)|1/n), for an even integer n

which is positive. These are

\/

PR < 3sup(XR)l, IXRIIY

)

IsP(R)| < on sup(IX(R)], IXRMI™™, n =4, 6, 8...., where o = 7,

generally, o, can be calculated as a polynomial root which depend on



n. The question about the constants was answered completely for an estimate
IR < c1lX(R)| + c2|><(R2)|1/2 which was expressed as

sup a(IXR)|, XRA)

aspects of general problem were discussed and then gave ap-plications by

) and then compared the estimates. Fur-ther, the

introducing an invariant 6(C) defined for all unital Banach algebra C.

Briggs [14] studied the algebra of functions that are continuous on [0, 1] that
are /. Jw-approximate polynomial; that is point-wise functions of limit of
/. Jw-Cauchy polynomial sequence. Let Cl(W ) be the algebra of all such
functions, for comparison purposes two other algebras of functions were
defined. If W e C[0, 1] let L(W ) be the zero set of W and C(lw) be the
subalgebra of C[0, 1] that consist p such that p’(x) existed for every x € [0'1]
\ L(W ), the function W p’ is continuous on [0, 1] since (W p’)(x) =0ifx e
LOW ), (W p)(X) = W (p (x) if x €[0, 1] \ L(W ) and let the subalgebra be

ACy of Cl(W ) which consist functions that are absolutely continuous.

Archbold [1] investigated whether the simple triangle inequality JT (a, A)/<
2t(a, Z) if applied holds. D(A) was defined to be a minimum value D in [0, «]
so that t(a, Z) <DJT (a, A)/. The behaviour of D in ideals and quotients were
discussed which proved that Dg(A) <1 for a weakly central C*-algebra A and
considered a class of n-homogeneous C*algebras that are special. D and Ds
was investigated and approximated finite-dimension (AF )C*algebra in that
context and an example was given to show certain estimates. Shlomo [85]
showed that for a certain Von-Neumann algebra U, a constant F existed such
that dist(T, U) <Fsupp qatu /P LTP J VT €



B(H). The work was extended to a Von-Neumann algebra U and showed that
there exists a constant G e B(H), dist(T, U) < GJAT |U,// where ot is the
derivation ot (S) = ST —T S thus proving that the inequality holds for large
classes of Von-Neumann algebras. Fong [25] considered A(M) defined as the
smallest number //Z//2 of Z that satisfy [Z", Z] = M and showed that 1 < A(M)

<2 and A(M), M was suitably chosen if it is close to 2.

Matej [47] estimated the distance of did, to the generalized derivations and
the normed algebra of M’ and considered the cases when M is an ultraprime,
when di = dy and M’ are ultrasemiprime and when a VVon Neumann algebra
is M from equation //NI’+N'// = //l\/I’//+//N’//, M', N e B(H). Abramovich,
Aliprantis, Burkinshaw [3] showed that the point spectrum of S lies on the
norm /S/; 1 is an identity operator on H only if the equation JI+S//= 1+/S/is
satisfied by operator S. Further, S, U € B(H) satisfy /S + U= J5/+ U/ and
zero which is the approximate point spectrum of the operator JSJU — UJS
proved that for an isometric operator the converse is true for either S or U
and a norm in B(H) don’t depend on the ideal on a norm of a derivation.
Baxter [6] provided the supremum on //B_l//g when the points (yi)nl form a
subset of the integer Ld, and a conditional definite negative function ¢ of
order 1, which included the multi-quadric for functions set that are large.
Further, a constructive proof was provided that a minimum bound is not
valid and a relevant method to analyze the problem on estimation of

eigenvalues such an interpolation matrix was commented on.

The norm property coefficients was done by Cabrera, Rodriguez [15] for

basic elementary operators /X¢ df < 2/a/jb/, for Jordan elementary op-

10



erator U = [Xc.a/ft Xc.af/and [Xcalt MXe.all < 20608/ for the upper

estimates. In fact, Gil [30] gave an estimate on matrix-valued function that is
regular and showed that for normal matrices it is attainable then investigated
their stability. Kittaneh [40] established the orthogonality, kernel and the
range of a normal derivation with its association to opera-tors of norm ideals.
Results relating to orthogonality of some derivation that are not normal were
obtained. Stacho and Zalar [89] established the lower estimates for

elementary operators of Jordan type in standard Banach algebras.

Danko [20] established that for all unitarily invariant norms and for bounded
Hilbert space operators there holds ||[C—-D|% <297t c|cl! *- D!} | g
> 2, if in addition, C and D are self-adjoint then ||||CX + XD|q||| <

277 X119 Al Yex + xpp|? ||, for all real ¢ = 3.

C has a approximate point spectrum oap(A), has complex numbers

o hence there exist {xn}n € H which is a unit sequence such that lim, JC —

o fn = 0. Since ap(C) is contained in the the boundary of
o(C). Gustafson, Rao [31], /A/ € o(A) if and only if JA/ € oap(A) also

a(A) €W (A) (spectral inclusion) and if w(A) = JA/, then y(A) = JA/.
Therefore, the result implied that JAJ €W (A) if and only if JA) € a(A).

In fact, Megginson [51] established that X € K, then 6g(X) €J and JBX —
XBJk = (B — DX — X(B — a)fh <2/B — afXJk for a € C. Therefore,
Jos(X) Jk < 2d(B) X/, depicting Jog|K/ < 2d(B). Fur-ther, the notion of R-
universal operators was introduced and that R-universal is an operator A
B(H) if Jog|K /= 2d(B) for every norm

ideal K e B(H). Landsman [45] pr\?ved that for a standard algebra oper-

ator on H Ma pf/+ Ma /> 2( E— 1) /afb/. Therefore, both the lower
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norm and upper norm bounds have been established for normally repre-
sented elementary operators. Alexander [4] had an estimate on stochastic
assumptions on transferring functions which are stable linearly and time-
invariant systems. The approach of nonparametric minimax was adopted to
measure estimate accurately, an estimator of quality was measured over a
transfer functions of family with the worst case error. The polyno-mial and
exponential decaying impulse response sequences families were taken into
consideration. The finite impulse response approximation for upper non-
asymptotic bounds on accuracy of the estimator of the least squares was
established. It was established that the speed with which a true response with
impulse is tending to null attained an estimate accu-rately was determined
essentially. Estimation accuracy on lower bounds were presented and an
adoptive estimator was developed which provided information about true

systems that is not exploitative.

Shinji [86] established that for a holomorphic functions f with

Re{gf(g)} > « and Re{gf (g)/f(g)} > a — 1, (0 < & < 1) re-spectively in

{lg| < 1}, estimates of sup|gj<1(1 — |g|2)|f”(g)/f/(g)| were given and functions
Gelfer-convex of exponential order a, £ was also con-

sidered. Milos, Dragoljub [52] considered elementary operators x — ~ n
j=1 Vjxwj that acts on a Banach algebra, vj and w;j denotes sepa-rate

generalized scalar elements of commuting families. The ascent es-timation and
lower bound estimation of an operator was given. Ad-ditionally, Fuglede-

Putnam theorem for elementary operator is a weak variant with vj and wj are
strongly commuting families were given i.e vj = vj + ivj (wj = wj + w; ), for all

’

vj and vj (wjand wj ) commutes.

. 1 .. . .
Further, result concerning L™ estimate in Fourier transform of a class Ccptoo

12



function in R2n was obtained.

Barraa and Boumazgour [7] characterized that the norm of bounded op-
erators more than one in a Hilbert space is the same summation of the norms
which showed that Js A g is convexoid with the convex hull of its spectrum if
and only if A and B are convexoid. Richard [78] established the CB-norms of
elementary operators and the lower bounds for norms on B(H). The result
was concerned with the operator Ua gX = AXB+BXA which showed that
Uas/ > JAJ/B/ which proved a conjecture of Math-ieu, other results and
formula of Uag/ce and Ua g/ were established. Richard [79] provided the
estimation on the norm of elementary opera-tors that are completely bounded
was a direct proof which was possible in B(H) through a generalized theorem
by Stampfli [87] and it was shown that an operator J of length | equals to m-
normand m = |.
T v M N

Seddik [81] proved that lower estimate bound / mN/=2( 2-1)) J /
holds, if it satisfies one of the conditions: (i). A standard operator alge-bra on
B(H) isL and M, N L, (ii). L is ideally normed on B(H) and M, N € B(H).
Florin, Alexandra [26] estimated the norm of operator Hg, = Ug + Up™ +
(A2)(Vg + V") which is an element on a C™-algebra Ag = C*(Ug, Vg unitaries

- UpVg = ezniHVQUQ). Further, proved for every
AeCandd 6[14 , l2 ] the inequality

< 2 . 1 1+cos” 4n0 . 2 ..
Mo < 4+1°—(1 =)l -  —=— )min{4, A° }. This im-
- 1 1

proved the significance of the inequality /Hg 2/ <2 2,0 4, 2], conjec-
tured by Beguin, Valette and Zuk. Siva, Richard, Edwin [84] introduced

a method to proof the estimate J/ dau Je. <etJC”, and x solved the

dxjdx;

equation ox—px = t. The technic is applicable to Laplacian on R” and be

13



used to obtain similar estimate when the Laplacian is replaced by elliptic

operators or infinite-dimensional operators.

Gil [29] considered commuting matrices of matrix valued analytic func-tion
and established a norm estimate, in particular, two matrices of matrix valued
functions on a tensor product in a Euclidean space were explored. Stephen
[90] communicated results on complex symmetric operator theory and
showed that two non-trivial examples were of great use in studying
Schr’odinger operators. To compute the norm of a compact complex sym-
metrical operator, a formula was proposed and the observation was ap-
plicable to problems which are related to quantum mechanics. Estimate was
given on the density matrix of a single-particle for Schr odinger oper-ators
with spectral gaps and the exponential decay of the resolvent. New methods
were provided to evaluate the resolvent norm for Schr'odinger operators

appearing on complex scale theory in resonance.

Man-Duen, Chi-kwong [50] showed that triangle inequality served an up-per
norm bound of an ultimate estimate for the sum operators that is sup{ T RT
+V SV /:Tand V}

are unitaries = min JR + AIJ+ S — A}/ : 2 € C. The result discussed had
relationship to normal dilations, spectral sets and the Von Neu-mann
inequality. Yong, Toshiyuki [95] gave a norm estimate on pre-schwarzian
derivatives of a specific type of convex functions by introduc-ing a maximal
operator of independent interest of a given kind. The relationship between the
convex functions and the Hardy spaces was discussed. Ola, Akataka, Derek
[73] analyzed the structure of the set D = {y € D(9) : lim,—« An(y) = A(Y)}

for convergence of the gen-

14



erators that are pointwise where o is an approximate inner flow on a C*-
algebra T with generator A and A, be bounded generators of the approximate
flows o". In fact, the relationship of D and various cores related to spectral
subspaces were examined.

Seddik [82] showed that E is a normal operator which is invertible in B(H)

1
if the estimate JE ® El+ely Ef, < //EI//E71/+ EE Y holds,
such that /./, is a one-to-one norm on the tensor-product B(H) & B(H), when
E is invertible self-adjoint then the equation becomes an equal-

ity.  Further, the characteristics of E eB(H) satisfied the relation
1

-1, -1 -1 .
JE ®E “+E " ®@E/ = [EJIE J/+ EumE?'y  then gave characteri-
zations by inequalities or equalities of normal-operators in B(H). Bonyo and

Agure [10] characterized the norm ideal on norm of inner derivation to be
equal to the quotient algebra and investigated them when the nor-mal and
hyponormal operators are implementing them on norm ideals. Bonyo and
Agure [11] investigated the relation between the inner deriva-tion
implemented by Z on norm J and the numerical-range of an operator

Z eB(H) with its diameter and considered application of T -universality on
the relation.

Okelo, Okongo and Nyakiti [58] investigated the project tensor-product, Vr' ®p

Wr’ of these algebras. It was established that JAg J < //A(l)sf + A(Z)sr// <2/As J

holds if A = vi’ ®wi’ belongs to Ar ®p Br and Ag on
A is a norm attainable a-derivation given by Ag = A(l)g +A(2)Sf. Bonyo and

Agure [9] gave the definition of inner-derivations implemented by A, B on
B(H) as oa(Y ) =AY =Y 4 og(Y ) = BY —Y B and generalized derivation by
onB (Y) =AY — Y B VY €B(H). Further, a relation between the norms of
oa, o and da,g on B(H) was specifically established when the
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operators A, B are S-universal.

Ber, Sukochev [8] showed that for every self-adjoint element b € S(N) a
scalar 19 € R exists such that ¢ > 0, then there exist a unital element u,
from N satisfy |[b, ug]| > (1 — &)|b — Apl|. From this result a corollary is that
for any derivation ¢ on N with the range on an ideal

SN the derivation ¢ is inner that is 6(.) = de(.) =[e, .Jand e €
I. Similarly the inner derivations on S(M) results were also obtained. Pablo,

Jussi, Mikael [75] provided theoretic estimate of two functions for the
essential-norm as a composition-operator C,, that acts on the space BM OA
(bounded mean oscillation for analytic functions); one in terms of the n-th
power q)n denoted by ¢ and the other involved the Nevanlinna counting

function. Triet, Jianfeng [91] introduced a new type of norm for
semimartangles, the defined norm of quasimartangales and then
characterized the square integrable semimartangales. Therefore, the zero-
sum stochastic differential games study was done and the value of the
process was conjectured as semimartangale with probable class measures

under some conditions.

Kingangi, Agure and Nyamwala [43] attempted the result on lower bound of
the norms for finite dimensional operators. Odero, Agure, Rao [57] de-
termined the norm of symmetric operator in an algebra which is two-sided.
More precisely, investigated the injection of tensor norm through the lower
bound of the operator. In addition, the irreducible C*algebra on the inner
derivation norm was determined and Stampfli [87] confirmed the result for
these algebras. Kinyanjui [41] estimated the norm-attainability for
elementary-operators on inner derivation, generalized derivation, ba-sic

elementary operator and Jordan-elementary operator under norms.
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Wafula, Okelo and Ongati [93] studied normally represented operator which
is a special type of elementary operator and results showed that elementary
equals its largest single value that is Uj(M) = /M//since

o)

AB =A hB+B hA is represented normally, then /Sa g/inj >
V_ A B. ®

=

Elena, Lorenza, lvan [24] studied properties of continuity of module spaces
for operators of :-pseudo-differential Op,(c) in a Wiener amalgan space with
a symbols c and obtained a bounded result for : € (0, 1) where:=0and:=1
at end points and other operators were unbounded. In addition, it was
exhibited the operator norm for the function : € (0, 1) has an upper bound
which is independent on parameter : € (0, 1) was found. Jian-Feng, David
[34] obtained R, R? and R™ norm of the operator K’ and R°(D) — R™(D)
norm of the operator C and Jg provided p > 2. Since approximations of fixed
in different space and classes have been done therefore, Okelo [70] discussed
the approximate non-expansive operators on fixed points in Hilbert spaces.
Particulary, it was proved that in an invariant subspace Hp on a complex-
Hilbert space H has a non-expansive retraction that is unique R of Hg onto
I'(Q) and y € Hg exists and a sequence {&n} generated by (&, = enf(&n) + (1 —

en)Ten &n for all n eN is strongly convergent to T y.

Cristina, Camil [19] proved the multilinear operators in RY under vector-
valued and mixed-norm estimates in multiple, precisely, the multilinear
variables of the Hardy-Little wood, maximal function and the operators Tk
associated with a single space along dimension k. It was shown that the input
functions are not necessary in Lp(Rd) when the dimension d > 2

but can be elements of mixed-norm spaces L1 ...LPs . The purpose for this X X

1 d
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study is to establish norm-attainability conditions for derivations, to de-
termine upper and lower norm-estimates for norm attainable derivations in

Banach-algebras.
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1.2  Basic concepts

In this section, the definitions that are basic and results on Hilbert space,
field, vector space, norm, Banach space, numerical radius, numerical range,

inner product, commutator and derivations are reviewed.

Definition 1.1 (93, Def. 1.1). A field K is a binary set operations that are

additive and multiplicative that satisfy the axioms below:

(i). Are closed under additive and multiplicative: W+ eKandw.v e

K vw,v ekK.
(ii). Law of association : W+ (x' + y’) = (W, + x') + y’ VW’, X’, y' ekK.

(iii). Commutativity: WV = v+w and (W,.v’).y, = (V’.y’).W,HN’, v’, y, €

K.
(iv). Additive and multiplicative identities: YW eK I—w eK:
W+-w=0Andw TeK:wyv ‘=1,

(v). Distribution: w'(v +y) = (wv +wy) vw,v,y eK.

(vi). Additive inverse: Yw eK 77 eK:w +z =0andz +w =0 thenw

=—z Vz,w eK.

(vii). Multiplicative inverse: For each d eK the equation td=1landdt =

1, t e K is the multiplicative inverse written as d _1.

Definition 1.2 (76, Def. 1.2). Let G be a vector space over a field F is a set

which is non-empty with vector additive and multiplicative operations that
are:
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(1). Commutativity c, + f, = f' + c', I/c,, f, eG,.
(ii). Associativity ¢ + (f +e)=(c +f)+e Vc,f. e €G.
(iii). Additive inverse e eG’, J—c¢ eG:c+—c=0.
(iv). Additive identity ¢ €G, 70 G :c +0=c Vc G.

(v). Multiplicative identity 1c=c vc eG.

(vi). Distributive property ¥p eFand Vc,f €G,p(c +f)=(pc +pf).

(vii). Law of Unitary Ve eG’, 1c=c.

Definition 1.3 (63, Def. 2.1). A norm X is a non-negative function /./: X —

R" u(0) sufficing the axioms below:
(). />0 vc eX.

(ii). /6 /=0onlyifc =0 ¥c eX.

(iii). fuc J=|a| ¢ J} V¢ eX and & €C .

(V). J6 +V /< Jel+ W VeV X

The ordered pair (X,, J./) is normed space.

Definition 1.4 (41, Def. 1.4). Banach space is a complete normed space.

Definition 1.5 (44, Def. 3.1-1). Amap ., . : EX E — K is an inner product
such that |7’s', t’, u €E, B, a eK if it satisfy:

0] s’, s >0and s’, s =0, only if s =0.
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(ii). ﬁs'+ at', u Zﬁs', u +a t', u.
(ii)). s,t =t,s .
A pair (E, ., .) is a space called inner product.

Definition 1.6 (74, Def. 2.2). A Hilbert-space is a space with complete inner
product.

Definition 1.7 (61, Definition 2.1). Let T € B(H), then,

(). Numerical-range by W '(T) ={Te,e:eeH, Je F1}.
(ii). Numerical-radius by o (T ) = sup{Js| : s €W (T )}.
Definition 1.8 (64, Def. 1.6). The spectrum P givenbyo(P)={P—Al: 1 €
C} is not invertible.

Definition 1.9 (42, Def.1.13). An operator that is commuting with the adjoint
is normal.

Example 1.10 (42). Example 1.14] Let A: Y — Yand A = 2il, l is an
identity and A is normal then AA*= A"A = I.

AA* = (2iD)2iD*
= Qil)(-2il)
= 4%
= 4l
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AA = (2il)*Qil)
= (=2il)(il)
= —4i%
= 4

It follows that AA* = A™A.

Definition 1.11 (76, Def. 1.1). Linear operators are mappings T X o
Y for:

(). M +f)=M()+M(f) Vc,f eY .

(ii). M'(ocf') = ocM,(f,) Vf €Y and complex numbers a.

(iii). K > 0 is constant such that //M'f' <K //f’// Vf €Y then M is
bounded.

Definition 1.12 (66, Def. 2.4). An operator is self-adjoint if S = S,

Definition 1.13 (67, Def. 3.1). For an operator K there exist a unit vector t €
H such that /Kt/= JK/is norm-attainable.

Definition 1.14 (59, Def. 1.1). A Banach algebra is a normed algebra if it is

complete.

Definition 1.15 (1, Def. 1.5). Banach *algebra Risa C™algebra if //r'r,*//:
P vr eR.
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Definition 1.16 (65, Definition 2.1). Elementary operator T : B’(H) — B’(H)
is defined by Tpigi (Y ) = Z”izl Di Y Ej ¥¥ eB(H) and ¥ Dj, E; fixed in

B’(H) wherei=1, ..., n.

(i). Left-multiplication operatorLp : B'(H) — B'(H), Lp(Y)=DY, vY eB'(H).

(ii). Right-multiplication operator Rg : B'(H) — B'(H), RE(Y)=YE, VY e
B (H).

(iii). Generalized-derivation, op g = Lp — RE.

(iv). Inner derivation (implemented by D), op(Y ) =DY — Y D.

(v). Basic elementary operator (implemented by D, E), Mpe(Y)=DYE, V
Y eB(H).

(vi). Jordan-elementary operator, Up g(Y ) =DY E+ EY D, VY eB’(H).

Definition 1.17 (62, Def. 1.11). An operator Q a projection if Q2 =Q.

Definition 1.18 (87, Def.). A derivation is a mapping P - U = U which
satisfy P (cd)=cP (d)+P (c)d forallc,d eU’

Definition 1.19 (69, Def. 1.2). An operator S is a maximal numerical range

defined as Wo(S) = {8 : St, t — 8, where jt/=1and JSt/— /S }.
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1.3  Statement of the problem

Since H is a Hilbert space whose dimension are infinite with the algebra of
linear operators on H being B'(H), then algebras of norm-attainable operator

on H is N A(H). Norm-attainable conditions for elementary operator has been
done and results obtained. But, norm-attainable con-ditions for derivatives in
Banach algebras and norm-estimates which is upper and lower norm
estimates for derivations in Banach algebras has not been investigated.
Objectively, the study will: establish norm attain-ability conditions for
derivations in Banach algebras and determine the upper and the lower norm
estimates for norm-estimates for norm attain-able derivations in Banach
algebras. In this study therefore, we seek to determine the norms of
derivations as an example of elementary operator when implemented by

norm-attainable operator.

1.4 Objectives of the study
Are to:

(i). Establish norm attainability conditions for derivations in Banach

algebras.

(i1). Determine the upper and the lower norm-estimates for norm attain-able

derivations in Banach algebras.
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1.5 Significance of the study

Norm-attainability has been investigated by many mathematicians for a long
time from the related literature. The result obtained from this study will be
helpful in comprehending the patterns of electrons movement in orbits and
approximating the distances moved in quantum mechanics. The result will
also be useful in solving ir]IegraI equations to obtain results for bounded
domain for instance f (x) = "2 x (t)dt if f is bounded and has norm ff /= b
—af el=[ab]then [F0)| = & Xx(t)dt]5 (b — )maxeey X ()] = (b —
a) x|
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, we review related literature on norm-attainability and norm-

estimates for norm attainable derivations in Banach algebras.

2.2 Norme-attainability

Stampfli [87] determined the inner derivation dto : Ag — ToAg — AgTo Which
acts on Banach algebra B(H) on Hilbert space H. Further, J/oto J5inf2 JTo
— Alg J/ for every complex A was shown. For a normal T , then Joto // can be

expressed as the geometry of the spectrum of T.

Lemma 2.1. [87 Lem. 1] If JTo/= /x/=1and /[I'ox//2 = (1 — &), then (To To
— x5 2.

In lemma 2.1 the lower and upper norm estimate on a norm of a derivation
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are determined. In this study we have determined lower and upper norm-

estimates for norm attainable derivations in Banach algebras.

Theorem 2.2. [87 Thm. 1] /o710 /= 2/To/if and only if 0 € Wg(Tp).

Theorem 2.2 establishes the norm of inner derivation on a maximal nu-
merical range of operator Tg. In this study we have determined the norm

estimate for norm-attainable derivations in Banach algebras.

Johnson [37] established method which apply to a uniform convex spaces
with a large class, that is the formula JoT / is false in IP and Lp(O, i<p<
o0, p /2.

Proposition 2.3. [37, Prop. 2] Let U be a normed space on K thenu, v e U

have the following properties.

(). Juf =1 and there exists g € U*with Jg/= 1 such that {un} is a sequence
with Jun/5 1, g(un) — 1 then uy — w.

(ii). st/ = 1 and the unit ball Uy is uniformly convex at t.

(iii). For every A €K, Ju+ Avj<1.

(iv). YA eK, v+ Auj=1.

Proposition 2.3 determines the norm estimate in a uniform convex space. In

this study we have established the norm estimate for norm-attainable

derivations in Banach algebras.

Proposition 2.4. [37, Prop. 3] Let F "be a uniform convex Banach-space f’, S

eF j,k eF “with ff /= 5= fo)= ] = o(f) =
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k(f’) =1, k(f') =0, g(s) = 0 and suppose g is the only element h of F K

/
with  h  =nh(f) = 1. Then conditions in proposition 2 are satisfied by

f', S, Q.

Proposition 2.4 considers the norm on a convex Banach space but we have

obtained norm-estimates for norm attainable derivatives in Banach-algebras.

Johnson [36] found that a derivation in B(H) is a map ¢ : B(H) — B(H) with
o(P S) =P o) + o(P )S P, S € B(H). Such derivations are necessarily
continuous and if S e B(H) then ds(P ) = P .S — SP is a derivation in B(H).

Theorem 2.5. [36, Thm. 1] If a derivation A is in B(H) then A = Ag for some
S eB(H).

Theorem 2.5 found the norm of a derivation but we have established the
lower and upper norm-estimates for norm attainable derivations in Banach

algebras.

Theorem 2.6. [36, Theorem 2] (Stampfli [87]) Jos/ = 2dist(S, CI).

Theorem 2.6 determines the inner derivation which is equivalent to 2dist(S, CI
but we have established the lower and upper norm-estimates for norm at-tainable

derivations in Banach algebras.

In Gajendragadka [27] was concerned with computation of norm of deriva-
tion and the Von-Neumann algebra. Specifically when the Von-Neumann
algebra act on separable Hilbert space H, T € U was proved that then Jt is

the derivative induced by T, then Jo1 |U/=2inf JT — ZJ, Z in the centre U.
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Lemma 2.7. [27 Lem. 1] If U is Von-Neumann algebra which act on Hilbert
space H and if T is in U, then there exist Zg in Z(U) such that, for every
projection P in Z(U), T —Zp)P J=inf T — 2)P J, Z € Z(V).

Lemma 2.7 determines the on norm of a VVon-Neumann algebra but we es-
tablished lower and upper norm-estimates for norm attainable derivations in

Banach algebras.

Theorem 2.8. [27, Thm. 1] Let U be a Von-Neumann algebra on H and

assume that U is abelian. Then for T in U, there exist Zg in Z(U) = U’ such

that Jo7 |U//= 2/T - Zo/.

Theorem 2.8 found the norm of inner derivation but we have determined the
norm of generalized derivation for norm-attainable derivations in Ba-nach

algebras.

Kyle [38] examined the numerical-range of inner derivation and the ele-ment
implementing it and the relationship between them.

Lemma 2.9. [38, Lem. 2.1] For any Banach-algebra C, D(B, C) = D(Lg;
MC) = D(Rg; M(C)) where Lg(X) = BX and Rg(X) = BX.

Lemma 2.9 established the numerical range in a complex unital Banach

algebra but we have considered derivations in norm-attainable derivations.

Theorem 2.10. [38, Thm. 2.3] Let A = LX, for some Banach-space
X, let 6a g(X) = AX + XB. Then Q(da B; L(LX))) = Q(A; LX)) +
Q(B; LX)).

Lemma 2.10 established the generalized derivation but we considered in-ner

derivation in norm-attainable operators.
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Kyle [39] studied on norms of inner derivations and used their properties and
concluded that a C* algebra is a closed subset of all derivations which forms
the inner derivations set and obtained the result which was a converse by
Stampfli [87].

Proposition 2.11. [39, Prop. 2.2] If x, I, y, k and A(l) = k(l)x, then JA/ = inf{
A+l):2eC}=1.

Proposition 2.11 investigates the norm of elementary operator but we con-

sidered norm attainability conditions for derivations in Banach-algebras.

Corollary 2.12. [39, Cor. 2.1] Let joa) = 2inf{ A+ AlJf: A € C} for all A in
L(X) then Joa/ = 2.

In corollary 2.12 the norm of inner derivation was found but we have inves-
tigated the norm of generalized derivation for norm-attainable derivations in

Banach algebras.

Charles and Steve [16] answered the question when X = T by structure
characterization of compact derivations of C*algebras. Moreover, the
structure of weak compact derivations of C*-algebras was determined and as
immediate corollaries of these results, conditions that were necessary and
sufficient were obtained so that C*algebras admits non-zero compact or

weakly compact derivation.

Lemma 2.13. [16, Lem. 2.1] Let an infinite dimensional Hilbert-space be H,
the algebra of all bounded linear operators on H be B(H). If 6 is a compact

derivations of B(H) then ¢ = 0.
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Lemma 2.13 gives the condition for B(H) to be a compact derivation,

d = 0 but we have given norm attainability conditions for norm-attainable

derivatives in Banach-algebras.

Erik [23] established that any C* algebra F on a Hilbert-space H with cyclic
vector with property that to derivation ¢ of F into B(H) an oper-ator y existed
inB(H) : VfeF, 6(f) =y, f1 =3/~ />

Theorem 2.14. [23, Thm. 4.1] Let B be a C*algebra, T a C* subal-gebra and
a derivation o0 of T into B. For any finite setty, ..., thin T,

/ zni:1 o(t)) o(t) [ < 14//5//2 / znizl titi/.

Theorem 2.14 determined the upper estimate for inner derivations but we

have given norm attainability conditions for derivatives in Banach-algebras.

Corollary 2.15. [23, Cor. 5.4] Let a C™algebra on a Hilbert-space H be
T. Suppose T has a cyclic vector, then:

a) For every operator y in B(H), d(y, T ) 5 12/ad(y)[T /.

b) Any derivation ¢ of T into B(H) implemented by an operator y is such
that /5 12/6/.

Corollary 2.15 established upper estimate for C*algebra derivations but we
considered inner and generalized derivations.

Mathieu [48] proved that for bounded derivations that are non-zero then the

product of two prime C*algebras are bounded.

Theorem 2.16. /48, Thm. 1] Let J be a derivation which is densely defined on
a C"algebra B. If 52 is bounded, then 0 is also bounded.
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Theorem 2.16 investigated derivation of a C*algebra but we have consid-
ered inner and generalized derivations in Banach algebras.

Lemma 2.17. [48, Lem. 1] Let Y be a prime C*algebra. For all ¢, d, e €Y,
let Mc e :YXY— Y is the bilinear mapping (z, W) 7—czdwe. Then [Mcdef =

IElBT1el.

Lemma 2.17 discussed the basic elementary operator and its norm but we
have established norms of inner and generalized derivations in Banach

algebras.

Volker [92] two automatic continuity problems for derivations on commu-
tating Banach algebras were discussed : (a) Derivation on a commutative
algebra is mapped onto the radical, and: (b) Banach algebras are contin-uous
on semiprime derivations. It was proved that (b) implies (a). Fur-thermore,
(b) proved that for special cases Banach algebras are reduced to a small class
and also similar results were given on epimorphisms. In fact, it was shown
that semisimple Banach algebras were characterized with no topologically
nilpotent element other than zero being among the commutative Banach
algebras; known examples of discontinuous deriva-tions on commutating
Banach algebras depended majorly on the existing nontrivial nilpotent
elements which was on a generalized derivation of semiprime Banach
algebra and that nilpotent elements are continuous on a commutative Banach

algebra without nontrivial.

Theorem 2.18. [92, Thm. 6] The following four statements are equiva-lent.

(i). The derivation on a nilpotent separating space has a commutative
Banach algebra.
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(ii). The derivation is continuous on a semiprime Banach algebra.

(iii). The derivation which is an integral domain is continuous on a Ba-nach

algebra.

(iv). The derivation is continuous on a topological simple, commutative

Banach algebra other than C.

Theorem 2.18 gave equivalent statements on derivations on a Banach algebra
but we have given conditions for norm-attainability for derivations on

Banach algebras.

Douglas [21] continued the study of Ws(Y ) which was considerably more
amenable where Archbold [1] defined the smallest numbers to be [0, «] and

introduced two constants W (Y ) and Wy(Y ) such that d(y, Q(Y )) < W (Y
)Py, Y) [ Vy €Y and d(y, Q(Y)) <Ws(Y )/D(y, Y )] Vy=y €Y.

Lemma 2.19. [21, Lem. 4.1] Let M be a C*algebra and let m € M.
Then J/D(m, M)/ =sup{ D(mp, T /M)//: P prime(M)}.

Lemma 2.19 discussed the upper norm estimate for distance but we con-

sidered norm of derivations in Banach algebras.

Corollary 2.20. [21, Cor. 4.3] Let X be a C* algebra with an identity and x &
Xsa. Then /D(x, X)//= sup{ u(xp) — B(xp)/ : P € prime(X)}.

Corollary 2.20 discussed the norms of elementary operators but we con-
sidered norm estimates for derivations in Banach algebras.
Dutta, Nath, Kalita [22] showed that if a1 and ap are J-derivation and (5'-

’ ’ Z ®
derivation on (7, y) and (T , y) and an arbitrary element n = 11 X1
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’

of (T,y) (T ,y), thenaderivation D on ¢ 5' exists in (T, y) o(T.7)
an ay ) X ty ax in which many enlightening
satisfy ©()= al(: t t 1 (2 ® ®

properties were ® ®

investigated on Jo = Jor /) + Joo and sp(c) = sp(a) + sp(aq).

Theorem 2.21. [22, Thm. 2.1] Let a1 and ap be o-derivation and 5,-
derivation on (P, I') and (P ,, F,) respectively. Then

(i). There exists a bounded 5 ¢ -derivation o.on (P, ) p(P ,T) de-
finedby an) = 1@y X 17Y1 axq)], for each vector
n= 21y, Gxe LF) ®,( ®1) ®

P, P, .

(i). If D1 and ap are 6— and 5 -inner derivation implemented by the
elements roeP and sg eP  respectively then a is an 6 ®5 -inner

o b2y
derivation implemented by rg ® 1ot 1a = So.
(iii). If a1 and ap are & and 0 -Jordan derivations, then o J-Jordan

derivation. — ®

(iv). If (P, I') and (P ', F,) are involutive Gamma-Banach algebras, and if a1
X

and a2 are 0— and 0 -star derivations, then oo < o, -Star deriva-tion.

Theorem 2.21 established the conditions for inner, Jordan, star deriva-tions

but we considered generalized derivations in Banach algebras.

Theorem 2.22. [22, Thm. 2.2] The following results are true :

4

(i). If a is a derivation on (T, T) rho(T , ') such that o( 1Y1 X1) =
>l ® 1 1 1 ®  -idempotent > ®
z X,z el andXx sareod elements of P , then
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there exist an 5’-derivation a1 on T defined by o1y X=aly X)

for all yeT for every o '-idempotent element xeP /; ® ®
(ii). If o. is bounded then aj;

(iii). If ais an o ®5'-inner derivation implemented by an element m of

) ® .
the formm = 1Y1 X1, where X1 ’s are ¢ -idempotent elements,

then a1 is an 6-inner derivation implemented by 1Y1;

(iv). If (T, T) and (T ', F') are involutive Gamma-Banach algebras, o aq are

star derivations.

). If a is an 6 ®5'-Jordan derivation then D1 is a 0-Jordan derivation;

vi). If o.is an & ®5'—derivation on (T, T) ®p(T ,, 1“,) such that

1 ® > ® 2
a( 11 X1))= 1 1 83, for o idempotent elements y1 inT,
and s €T then there exists an 0 -derivation o on (T, T ) given by
®

y a2 = aly X) for every o-idempotent element yeT and for all

elements xeT . The above results (i), (iii), (iv) and (v) are true for

2.
Theorem 2.22 established the conditions for inner, derivations but we have
considered generalized derivations in Banach algebras.

Rajendra, Kalyan [77] showed that for the nth order commutator

[[[kB), Y], Y] ..., Y] aformula was obtained in terms of the Frechet
derivatives Smk(B) in which the formula illustrated was used to obtain

bounds for norms of a generalized commutator k(B)Y — Y k(B) and their
higher order analogues.
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Theorem 2.23. [77, Thm. 2.1] Let k be a holomorphic function on a complex
domain Q and let B be an operator contained in spectrum of Q. Then k(B)Y

— Y k(B) = 0B(A)(BY — Y B) holds for all Y.

Theorem 2.23 discussed the use of the formula to obtain the derivative of the
inner commutators but we have established the norms of inner derivations in

Banach algebras.

Theorem 2.24. [77, Thm. 2.2] Let k be a continuously differentiable function
on an open interval 1. Then k(S)Y —Y k(S) = ok(S)(SY —Y S) holds for all self-
adjoint operators S with their spectra in I, and for all skew-Hermitian

operators Y.

Theorem 2.24 discussed the derivative of inner commutators of self-adjoint
operators and skew-Hermitian operators. In this study we have discussed

inner and generalized derivations in norm-attainable operators.

Hong-Ke, Yue-ging [33] proved that sup{ Znizl RiY Si/:Y eB(H), J¥ J<1}
= sup{ Znizl RiT Sj/:UU*=T U =1, U eB(H)}. Therefore, there exists an
operator Yx which proved that J¥y/= 1 so that J/ Znizl RiYkSi/ = sup{ Znizl
RiY Si/:Y eB(H), J¥ J <1} if and only if there exists a unitary Ug € B(H) so
that / z”izl RiUoSi// = sup{ Z“izl RiY Sif: Y €B(H), ¥ /<1}.

Corollary 2.25. [33, Cor. 2.2] If the elementary-operator 6 ~ ~isnorm
P.Q

attainable, then there exists an isometry or co-isometry Vo such that

1op- o /=1 Zinzl PiVoQi/.

Corollary 2.25 gave norm-attainability conditions for generalized deriva-
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tions but we have considered norm-attainability conditions for inner deriva-

tions.

Lemma 2.26. [33, Lem. 2.5] For an operator P  B(H) then P is norm

attainable if and only if its adjoint P *is norm attainable.

Lemma 2.26 discussed the conditions for norm-attainable operators but we
have considered conditions of norm-attainable derivations in Banach

algebras.

Okelo, Agure and Ambogo [61] established the norm of Jordan-elementary
operator Upm ,N : B(H) — B(H) givenas Uy n=MYN+NY M, Y eB(H)
and M, N fixed in B(H) and showed that Upm N /= /MJN/J and then
characterized the norm-attainable operators using this norm.

Theorem 2.27. [61, Thm. 3.4] An operator C € B(H), C is norm attainable if
and only if its adjoint is norm attainable.

Theorem 2.27 determines the conditions of norm-attainable elementary
operators but we have established the conditions of norm-attainability for

derivations in Banach algebras.

Theorem 2.28. [61, Thm. 5.1] Let Ty c,p : B(H) — B(H), Y — CY D + DY C,
Y e B(H) norm-attainable Jordan elementary oper-ator. Assume C, D
B(H) are norm attainable such that C = yQ and D = yR where Q = |C|, R =

|D| and y a unitary in B(H) then Ty c p|B(H)/> /C| D/J.

Theorem 2.28 considers lower estimate for norm-attainable Jordan ele-
mentary operators but we considered lower and upper norm-estimates for

norm attainable derivations in Banach-algebras.
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Okelo [68] investigated that ideals of norm-attainable elements imple-
mented by inner derivations of a C*algebra has relation to primitive ideals.
Since there is a relationship between the constants A(¢) and Ag¢ ideals of C*

algebras and ideals that are primitive then related results were given.

Lemma 2.29. /68, Lem. 3.1] Let & be a C™-algebras, prim (&) the set of all
primitive ideals in & [A] the cannonical image of A in &/K, then 5AN : //5AN /
= sin{ o[a]l(Q)/K/ : K e prim(¢)} is a norm-attainable inner derivation

Lemma 2.29 determined the norm of norm-attainable inner derivations but

we have given norm-attainability conditions for inner derivations.

Corollary 2.30. [68, Cor. 3.2] Let A ¢ be norm attainable and con-Sider the
norm attainable inner derivation 5AN , induced by A. Then the following
hold:

. N . ..

(i). op  is self adjoint.

(ii). A'is normal.

(i), oA &)= 2d(AY.

Corollary 2.30 investigated norm-attainability conditions for inner deriva-

tions but we have considered generalized derivations.

Okelo, Agure and Oleche [66] gave results on necessary and sufficient con-
ditions for norm-attainable operators also studied norm-attainable oper-ators

and generalized derivations
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Theorem 2.31. [66, Thm. 3.3] An operator B € B(H) implemented by norm-
attainable inner derivation, 5BN is uniformly dense in B(H).

Theorem 2.31 establishes norm-attainability condition for inner deriva-tion
which is uniformly dense in B(H) but we have considered norm-attainability

conditions generalized derivation in Banach algebras.

Lemma 2.32. [66, Lem. 3.5] The set of operators B, C  B(H) which are
implemented by norm-attainable generalized derivation, 5B,CN are uni-
formly dense in B(H)XB(H).

Lemma 2.32 establishes norm-attainability condition for generalized deriva-
tion which are uniformly dense in B(H) X B(H) but we have considered norm-

attainability conditions of inner derivation in Banach algebras.

Okelo [65] extended the work by presenting new results on conditions that
are sufficient and necessary for norm-attainable operators on Hilbert space,
elementary operator and generalized derivation was established. Further,

Okelo [65] established that a unit vector exists A e H, JA/ = 1 so that JS1)=
IS/ with SA, 2 =#.

Theorem 2.33. [65, Thm. 2.1] Let Z e B(H), f € Wo(Z) and ¢ > 0. There 7
an operator T € B(H) such that jz/= JT J, with JZ — T J < ¢. Furthermore,
there exists a vector A € H, JAJ/=1suchthat JT )= JT Jwith T2, 2= p.

Theorem 2.33 determines the norm of an operator in a maximal numerical
range of Z but we established norm-attainable conditions for derivations in

Banach algebras.
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Lemma 2.34. [65, Lem. 3.1] Let S € B(H). Js is norm attainable if there 7a
vector y e H such that fy/=1, JSy/= /5/, Sy, y=0.

In lemma 2.34 norm-attainability for inner derivations is established but we
have considered norm-attainable operators for generalized derivations in

Banach algebras.

Okelo [62] studied norm-attainable operators that are convergent and

established projective tensor norm via norm-attainable operators.

Theorem 2.35. [62, Thm. 3.1] Let M € B(H), a« € Wp(M) and i > 0. There
exists an operator N  B(H) such that MJ = /NJ, with JM — NJ < L.
Furthermore, there exists a vector 6 € H, JJ9)/=1 such that JV )= N/ with
70, 0 =a.

Theorem 2.35 investigates upper norm estimate of a maximal numerical
range S € Wp(A) but we established lower and upper norm estimate for
norm-attainable derivations in Banach algebras.

Theorem 2.36. [62, Thm. 4.4] Let {Kn} and {L,} be sequences of

operatorsin N A(H) and N A(H ')respectively. If one converges to zero
&

uniformly and the other is bounded, then {K,  Lp} converges to zero
uniformly.

Theorem 2.36 shows that sequence of N A(H) converges uniformly to zero
but we established norm-attainability conditions for derivations in Banach

algebras.

Sayed, Madjid, Hamid [80] proved that for a linear map A : U — U, A(XY ) =
AX)Y + AX(Y ) for each X, Y €U is a derivation, then any
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two derivations A and A on a C*algebra U exists a derivation 6 € U such
that AA = 52 if and only if either A'=0o0rA=fA for any f €C.

Proposition 2.37. [80, Prop. 2.4] Let D be a subalgebra of M2C which is a
generation of E11 and E12 and 6, 5, be derivations on D. Then AA = 52 if and
only if A’ =0or A,Z AgE12, a, e C implies that A= Ayz12,

a €C, or equivalently A'=0or A% = 0 implies A2 = 0.

Theorem 2.37 discussed the product of two derivations in a subalgebra
matrix. This study we have established norm attainability conditions for

derivations in Banach-algebras.

Theorem 2.38. [80, Thm. 3.1] Let U be a C™algebra and A, A’ be derivations
on U. Then there exists a derivation § on U such that AA = &° if and only if
either A =0 or A=fA forall f eC.

Theorem 2.38 discussed two derivations in a C*algebra and their product.
This study we established norm-attainability conditions for derivations in
Banach algebras.

Clifford [18] studied hypercyclic generalized derivations acting on separa-ble
ideals of operators then identified concrete examples and established some
conditions that are necessary and sufficient for their hypercyclic-ity.
Particular Banach algebras acted on by the dynamics of elementary operators

were considered.

Theorem 2.39. [18, Thm. 4.1] Let X and Y be hyponormal such that X, Y
B(H). The generalized derivation txy : Cp — C3 is not super-cyclic.
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Theorem 2.39 discussed supercyclicity of generalized derivation but we have

investigated inner derivations on Banach algebras.

Oyake, Okelo and Ongati [74] characterized inner derivations in Banach
algebra and investigated inner derivation properties that are implemented by
norm-attainable operators such as measurability, normality continu-ity,
linearity, trace and spectra of inducing operator and determined the norms.

The result showed that the derivations admitted tensor norms of operators.

Theorem 2.40. [74, Thm. 3.2] LetV : Hy — Hp and W : K1 — K>» be

bounded operators between Hilbert-spaces. Then a unique bounded opera-

() ® ()e 1® 1 ® ®
torV. "~ W:H; Ki - Hy K, existssuchthat(v W)X Y)=
v\>/< ® Wy X H and Y K. Moreover, v Q?W =
4 € v e / /
Y/

Theorem 2.40 investigates the norm of bounded operators between Hilbert
spaces but we have given norm attainability conditions for derivatives in

Banach-algebras.

Kinyanjui [42] characterized norm-attainable elementary operator and
showed if operators M, N and dp ,N are norm attainable then opm N IS

normally represented.

Lemma 2.41. [42, Lem. 2.7.] Let an infinite dimensional complex non-

separable Hilbert space be H and the algebra of all bounded linear
operators on H be B’(H). Let - B'(H) — B'(H) defined as 5p’ (Y ’) =pY

=Y P . Then dp +is norm attainable.
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Lemma 2.41 establishes conditions of norm-attainability for inner deriva-
tions but we have established conditions of norm-attainability for a gen-

eralized derivations in Banach algebras.

Lemma 2.42. [42, Lem. 2.10] Let an infinite dimensional complex non-
separable Hilbert space be H and the algebra of all bounded linear opera-

tors on H be B,(H). Let o : B'(H) — B,(H) be defined as op (X’) =3") /X’ _

X(Q(. Then Jp- g is norm-attainable if P /and Q, are norm-attainable.

Lemma 2.42 establishes conditions of norm-attainability for generalized
derivations but we have established conditions of norm-attainability for inner

derivations in Banach algebras.

In Okelo, Aminer [67] norm inequalities that are new of matrices of norm-
attainable operators were presented and the map which act on matrices of the
operators were characterized. Okelo and Aminer [67] completely
characterized norms that are bounded, gave norm-convergence in N A(H)-
classes via the extension of orthogonality. Norm inequalities that are new of
matrices of norm-attainable operators were presented and the map which act
on matrices of the operators were characterized. Okelo and Aminer [67]
completely characterized norms that are bounded, gave norm-convergence in

N A(H)-classes via the extension of orthogonality.

Lemma 2.43. [67, Lem. 3.2] If Py, Qn € N A(H) are norm-attainable then

Pn+ ON, PN — Onand APy, /. € C are norm-attainable.

Lemma 2.43 shows that Py + Qn , PN — On and APy , 4 € C are norm-
attainable. This study we have done norm estimates for norm-attainability

derivations in Banach algebras.
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Theorem 2.44. [67, Thm. 3.6] An operator B € N A(H) which is nor-mal is
norm attainable.

Theorem 2.44 shows that B € N A(H) is normal but we have considered
conditions of norm-attainability for derivations in Banach algebras.

Okelo [64] considered orthogonal and norm-attainable of operators in Ba-
nach spaces, gave in details the generalization of norm-attainability and
orthogonality and characterization. The conditions that are sufficient and
necessary for norm-attainable operators in a Hilbert space, result on ker-nel
of elementary operators and the orthogonal range when implemented by

norm-attainable operators in Banach spaces were given.

Proposition 2.45. [64, Prop. 3.1] Let B, C, D € Q with DC =1 (1 is an

identity element of €2). Then a generalized-derivation opg = BY —
Y C and an elementary operator ®g c (Y ) =BY C — Y, Rc (Randg p) N

Kerog p = Ran®p ¢ NKer®g ¢ . Therefore, if Ranog p NKerog p = {0}
then Ran®gp ¢ = NKer®gp ¢ = {0}.

Proposition 2.45 investigates the generalized derivation but we have es-

tablished the both inner and generalized derivation in Banach algebras.

Theorem 2.46. [64, Thm. 3.10] Let the normal operators be

B,C,D,E eB(H)suchthatBC =BC,CE =EC,BB*<DD"* C"C

SE"'E’. For an elementary operator U'(X’) =BXC - DXE andT e B’(H)
satisfyingBT C =DT E, JU(X) +T /= /T Jforall X eB(H).
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Theorem 2.46 determines the lower norm estimate for normal operators but
we investigated the upper norm-estimates for norm attainable deriva-tions in

Banach algebras.

Odero, Agure, Nyamwala [56] showed that the mapping Aag : B(H) — B(H)
is a generalized derivation of two bounded operators A,, B e B(H) induced
by A and B were defined by Aap (Y ) = AY - YB’, therefore, the norm
VAV = //A'//+ //B'//for all A', B € B(H) was given.

Theorem 2.47. [56, Thm. 1] Let J, K € B(H) and J3« : B(H) — B(H). Then
ik [= B+ K/ for all B(H).

Theorem 2.47 determined the norm of generalized derivation operator but we
have considered norm attainability conditions for derivations in Banach-

algebras.

Theorem 2.48. [56, Thm. 2] Let the distance from A and B to the scalar
multiple of the identity be 6(A) =inff A — J/: 2 €C} and 6(B) = inf{ B — 1 :
4 €C}. Then fopssH)/= IA]+ B

Theorem 2.48 determined the distance from A and B on a generalized inner
derivation operator but we considered norm attainability conditions for

derivations in Banach-algebras.

Okelo and Mogotu [59] gave norms of commutators of normal operators for
generalized inequalities and established the commutations of derivation for

orthogonality and norm inequalities.

Theorem 2.49. [59, Thm. 3.2] Let the operators M, N, X € B(H), the pair (M,
N) satisfies Fuglede Putnam’s property and D € ker(6)m N Where D e B(H)

then fomn X + DJ> /DJ.
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Theorem 2.49 investigates the lower norm estimate for a generalized deriva-
tion for a pair of operators (M, N) but we have determined norm estimate for

inner derivation in Banach algebras.

Corollary 2.50. [59, Cor. 3.3] Let the operators M, N, X e B(H) and D
ker(om,N ) then fomn X +DjJ> JDJ.

Corollary 2.50 determines the lower norm estimate but we have considered

norm estimate for derivations in Banach algebras.

Okelo [60] characterized norm-attainable classes in terms of orthogonality
by giving norm-attainability conditions that were necessary and sufficient for
Hilbert space operators first and the orthogonality result on the ker-nel and
range of norm-attainable classes in elementary-operators when implemented

by norm attainable operators was given.

Proposition 2.51. [60, Prop. 3.2] Let X and Y be norm-attainable Hermitian
elements. Then oy is also norm-attainable Hermitian.

Proposition 2.51 gave the condition for generalized derivation for norm-
attainable Hermitian elements but we determined norm-attainability con-

dition for derivations in Banach algebras.

Corollary 2.52. [60, Cor. 3.3] If A and B are norm attainable and normal
elements in Q then dp p is also norm attainable and normal.

Corollary 2.52 establishes norm-attainability condition of normal elements in

Q for a generalized derivation but we have considered inner derivations in

Banach algebras.
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Abolfazl [2] determined the norm of the inner Jordan *derivation Js :

T — ST — T 'S acting on the Banach algebra B(H). It was shown that

1] = 2 supzewo(s) | 4| in which Wo(S) is the maximal-numerical range of
operator S. Determined the norm of inner Jordan =derivation ds :

T — ST — T "S which act on the Banach algebra B(H). It was shown that

1osf = 2 supzewo(s) | 4| in which Wo(S) is the maximal-numerical range of
operator S.

Theorem 2.53. [2, Thm. 2.1] Let H be a Hilbert-space and let S e B(H). If'1
2
eWo(S), then s/ = 2(/51F — 125 .

Theorem 2.53 estimates the lower norm of a maximal numerical range of
operator S but we have determined the norm estimate for norm-attainable

derivations in Banach algebras.

Corollary 2.54. [2, Cor. 2.2] Let H be a Hilbert-space and let S € B(H) then
Jos)/ =25/ if and only if 0 € Wp(S).

Corollary 2.54 determines the norm of a maximal numerical range of op-
erator T but we considered norm estimate for norm-attainable derivations in

Banach algebras.

Gyan [28] obtained precisely when zero belongs to maximal numerical range
of composition operators on H and then characterized the norm-attainability

of derivations on B(H).

Theorem 2.55. [28, Thm. 1.4] For B € B(H ), fosf/=2inf JB —A1f:
A €C.

Theorem 2.55 determined the norm of inner derivations but we deter-mined

norm estimates for the derivations.
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Theorem 2.56. [28, Thm. 1.5] For F € B(H),

Ior.c) = inf JF— AL+ JG — AIJ: ) eC.

Theorem 2.56 determined the norm of generalized derivations but we have

determined norm estimates for the derivations.

Okelo [71] norm-attainability for hyponormal operators that are compact
were characterized, sufficient conditions for a compact hyponormal oper-ator
that is linear and bounded on an infinite dimension for a complex Hilbert
space to be norm attainable were given. Further, the structure and other
properties of compact hyponormal operators when they are self-adjoint,
normal and norm attainable with their commutators were discussed in

general.

Proposition 2.57. [71, Prop. 3.1] Let K e B(H1, Hp) be compact hy-
ponormal. Then

(i). m(K) = m(|K).

(if). m(K) =d (0, o(IK])).

(iii). m(K) > 0 if and only if R(K) is closed and K is one-to one (K is
bounded below).

(iv). in particular if H; =Hp =HandK * €B(H), then m(K) =

—t
K =/

(v).ifHy=H>=Hand K is normal, then

(@) m(K)=d(, a(K)).

48



(b) m(K)=m(K").
(©) m(K™ =m(K)" for eachn eN.

(vi). ifK >0, then m(K) = m(K %)°.

Proposition 2.57 established conditions for compact and hyponormal op-
erators but we have considered norm-attainability conditions for deriva-tions

in Banach algebras.

2.3 Norm estimates for derivations

Lumer [46] obtained a sharp estimate not only from |sp(R)| = spectral radius

1/n

of R but also [sp(R)| in terms of sup(JX(R)|, |X(Rn)| ), for an even integer n

which is positive. These are
\/

PR < 3 sup(XR)], IX(R?

1/2

)|

Isp(R)| < o sup(IX(R)], IXR™)M"

on can be calculated as a polynomial root which depend on n. The question

)
\

),n=4,6, 8..., where o, = 7, generally,

about the constants was answered completely for an estimate JR/ < c1|X(R)|

2,,112

+ Co|X(R™)|™ " which was expressed as

sup a(IXR)|, AXRA)

aspects of general problem were discussed and then gave ap-plications by

) and then compared the estimates. Fur-ther, the

introducing an invariant 6(C) defined for all unital Banach algebra C.

Theorem 2.58. [46, Thm. 1] There 7 constants c1, ¢ such that for any real

Banach-space Y, one has JA/ < c1|W ,(A)| + Co|W '(A2)|1/2, VA €
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B(Y).

Theorem 2.58 discussed the upper norm estimate but we have considered

lower norm estimates for derivations in Banach algebras.

Archbold [1] investigated whether the simple triangle inequality /T (a, A)/ <
2t(a, Z) if applied holds. D(A) was defined to be a minimum value D in [0, «]
so that t(a, Z) <DJT (a, A)/. The behaviour of D in ideals and quotients were
discussed which proved that Dg(A) <1 for a weakly cen-tral C*-algebra A and
considered a class of n-homogeneous C*algebras that are special. D and Ds
was investigated and approximated finite-dimension (AF )C*algebra in that

context and an example was given to show certain estimates.

Proposition 2.59. [1, Thm. 4.1] Let P be an ideal of a C*algebra U.
ThenT (P) <2T (V).

Theorem 2.59 determined the upper norm estimate but we have estab-lished

the norm estimate for norm-attainable derivations in Banach alge-bras.

Fong [25] considered A(M) defined as the smallest number //Z//2 of Z that
satisfy [Z", Z] = M and showed that 1 < A(M) <2 and A(M), M was suitably
chosen if it is close to 2.

Proposition 2.60. [25, Prop. 1] If [S*, S] = T, then /57 = /T /.

Proposition 2.60 established the lower estimates for operators that are self-
adjoint. In this study we have determined lower-estimates for norm

attainable derivations in Banach-algebras.
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Proposition 2.61. [25, Prop. 2] If K is a self-adjoint matrix with trK = 0, then
there exists some matrix W such that [W W /] =Kand W //2 <2/K/J.

Proposition 2.61 investigated the upper estimates for self-adjoint opera-tor.
In this study we have determined upper-estimates for norm attainable

derivations in Banach-algebras.

Matej [47] estimated the distance of did, to the generalized derivations and
the normed algebra of M’ and considered the cases when M is an ultraprime,
when di = dy and M’ are ultrasemiprime and when a VVon Neumann algebra

is M from the equation //l\/I'+ R’//: //NI’//+ //R’//, M', R eB(H).

Theorem 2.62. [47, Thm. 1] Let E be an ultraprime normed-algebra, and let
dy, d2 € 6p(E). If a constant ¢ > 0 satisfies, then dist(didy, Jp(E)) >

(c°16) Jth iz

Theorem 2.62 discussed the lower estimate for ultraprime normed algebra
and we have considered lower norm estimate for derivations in Banach

algebras.

Theorem 2.63. [47, Thm. 3] Let A be a Von-Neumann algebra. If d1, do €
op(A), then dist(d1dy, dp(A)) < (1/2)/d1//d2 /. For every

dist(d’, 55(A)) = (1/2) /4.

Theorem 2.63 discussed the upper estimate for a Von Neumann algebra and

we have considered upper norm estimate for derivations in Banach algebras.
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Baxter [6] provided the supremum on //B_l//g when the points (yi)nl form a
subset of the integer Ld, and a conditional definite negative function

¢ of order 1, which included the multi-quadric for functions set that are
large. Further, a constructive proof was provided that a minimum bound is
not valid and a relevant method to analyze the problem on estimation of

eigenvalues such an interpolation matrix was commented on.

nxn

Theorem 2.64. [6, Thm. 4.1] Let B € R be a symmetric matrix with
eigenvalues o1 > ... > ap. Let D be any subspace of R" of dimension m. Then

we have the inequality max{sT Bs:s s= 1, 51D} > om+1.

Theorem 2.64 established the lower estimate of symmetric matrix with
eigenvalues but we have determined the lower norm estimate for deriva-tions

in Banach algebras.

Kittaneh [40] established the orthogonality, kernel and the range of a normal
derivation with its association to operators of norm ideals. Results relating to

orthogonality of some derivation that are not normal were obtained.

Theorem 2.65. [40, Thm. 1] Let M e B(H) be normal, S eM’, and

T €B(H). Ifom (T) +S €Ky then S €Kiy and | om (T) + S| =] S |.

Theorem 2.65 investigates the lower norm estimate for an inner derivation

but we have determined for a generalized derivation in Banach algebras.

Corollary 2.66. [40, Cor. 1] Let P, Q, R e B(H) such that P and Q are
normal and P R = RQ. If Y € B(H) such that op (Y ) + S €K] . |, then S €
Kigpand|op(Y)+S|>]S]|

52



Corollary 2.66 discussed the lower norm estimate for a generalized deriva-

tion but we have determined for an inner derivation in Banach algebras.

Stacho and Zalar [89] established the lower estimates for elementary op-

erators of Jordan type in standard Banach algebras.

Proposition 2.67. [89, Prop. 2] The estimate Jap/ > fa/./b/+ | &, b | holds.

Proposition 2.67 established the lower norm estimate for a generalized
derivation for elementary operators but we determined the norm estimate for

an inner derivation in Banach algebras.

Theorem 2.68. [89, Thm. 4] Let A be a standard operator algebra which acts
on\/a Hilbert space H. If ¢, d €A, then the uniform estimate fU¢ ¢/ >

2( 2 - 1)/e/.Jd/holds.

Theorem 2.68 considered the uniform estimate for a generalized derivation
in a standard Banach algebra but we have investigated norm estimate for an

inner derivation in Banach algebras.

Danko [20] [20] established that for all unitarily invariant norms and for
bounded Hilbert space operators there holds /||C—D|%|/< 27 *)cicl? -
D|D|q_1|// g > 2, if in addition, C and D are self-adjoint then ||||CX + XD|q|||
<277 X7 YAl tex + xoipj? Y|, for all real ¢ = 3.

Theorem 2.69. [20, Thm. 3.1] If X and some self-adjoint C and D are in
B(H), then [/ICX + XD/ < 22 1 x /el tex + xp|pP ) for all

real p > 3 and for all unitarily invariant norms | /. /\.
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Theorem 2.69 determined the upper bound for unitarily invariant norms but
we have investigated the lower bound for norm-attainable derivations in

Banach algebras.

Shinji [86] established that for a holomorphic functions f with Re{gf’(g)} >
o and Re{gf (@)/f(@)} > ¢ — 1, (0 < a < 1) respectively in {|g| < L},

estimates of sup|g|<1(1—|g|2)|f"(g)/f'(g)| were given and functions Gelfer-
convex of exponential order o,  was also considered.

Theorem 2.70. /86, Thm. 3] Let —o < < +00, 0 <a <1 andy>0.
Then for f e Kg(B, o, y) we have Jff<|1 — B|M(a) + 2y.

Theorem 2.70 determines the upper norm estimate for holomorphic func-
tions. In this study we have determined norm estimates for derivations in

Banach algebras.

. : . 2
Milos, Dragoljub [52] considered elementary operators x — nj:l ViXWi

that acts on a Banach algebra, vj and w; denotes separate generalized scalar

elements of commuting families. The ascent estimation and lower bound
estimation of an operator was given. Additionally, Fuglede-Putnam theorem

for elementary operator is a weak variant with v; and wj are strongly

commuting families were given i.e vj = vj + ivj (wj =w;j +w;j ), forall v; and
" " A 1 ; ; .

Vj (wj and wj ) commutes. Further, result concerning L™ estimate in Fourier

Y .
transform of a class Ccptoo function in R was obtained.

Lemma 2.71. [52, Lem. 2.2] Let T € R%" be a set of balanced Hausdorff
dimension c. Then for all 6 > 0 there exist open set Us 2T, such that mUs <
C(T, n)6>" € and distT, Us~ > &/P.

Lemma 2.71 determined the lower estimate for a general derivation and
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we have discussed the lower estimate for inner and generalized derivations in
Banach algebras.

Barraa and Boumazgour [7] characterized that the norm of bounded op-

erators more than one in a Hilbert-space is the same summation of the norms
which showed that Js A g is convexoid with the convex hull of its spectrum if

and only if A and B are convexoid.

Theorem 2.72. [7, Thm. 2.1] Let X, Y € B(H) be non zero. Then the equation
JX+Y J= XY Jholds if and only if /X JJY [ €W (X*Y).

Theorem 2.72 discussed the operators of norm in a Hilbert space. In our
study we have determined lower and upper norm estimate in norm-attainable

derivations in Banach algebras.

Corollary 2.73. [7, Cor. 2.3] Let Y, Z € B(H) be non zero. If J)¥ JJZ) €

W (Y “Z), then 0 e aap(JZ/Y — /¥ JZ). The converse holds if any one of
Y or Z is an isometric operator.

Corollary 2.73 established the closure of numerical range of bounded op-
erators. In our study condition for norm-attainability of derivations in

Banach algebras has determined.

Richard [78] established the CB-norms of elementary operators and the
lower bounds for norms on B(H). The result was concerned with the oper-
ator Ua gX = AXB + BXA which showed that Ua g/ > JA//B/ which proved
a conjecture of Mathieu, other results and formula of Uap/cg and Uag/

were established.

Theorem 2.74. [78, Thm. 2] Assume that H is two-dimensional and D, E €

B(H). Let Up g(X) = DXE+EXD. Then Up g/cB > /D/L/E .
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Theorem 2.74 determined the lower bound for Jordan elementary oper-ator.
In this study we have determined lower norm estimates in norm-attainable

derivations in Banach algebras.

Theorem 2.75. [78, Thm. 6] If C, D € B(H) and Uc p(X) = CXD + DXC.
Then Ucp/= [C/ID/.

Theorem 2.75 determined the lower bound for Jordan elementary opera-tor.
In this study we determined lower norm-estimates in norm attainable

derivatives in Banach-algebras.

Richard [79] provided the estimation on the norm of elementary operators
that are completely bounded was a direct proof which was possible in B(H)
through a generalized theorem by Stampfli [87] and it was shown that an

operator J of length | equals to m-norm and m = .

Theorem 2.76. /79, Thm. 4.3] If k> 1 and A is a continuous trace C*algebra

which is not K subhomogeneousithen there exists an elementary

k+1

operator T € EI(A), T (X) = j=1 fixgi, fi, gi e Afor 1 <i <k + 1 with JT Jk <
Meb-

Theorem 2.76 determined the upper norm estimate for elementary op-erator
but we have considered the norm-estimates for norm attainable derivations in

Banach-algebras.

\/
Seddik [81] proved that lower estimate bound /TmN / = 2( 2-1)/M/JINJ

holds, if it satisfies one of the conditions: (i). A standard operator alge-bra on

B(H) isLand M, N €L, (ii). L isa norm ideal on B(H) and M, N € B(H).

Lemma 2.77. [81, Lem. 1] We have the following properties:
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(). Uscp/=sup{| Ca,yDx,v+Da,yCx,Vv|: faj=NI=[kI= N]=1}.

(ii). Ujc.p/=2w(CD).

Lemma 2.77 gave the norm and lower norm estimates for maximal numer-
ical range of operators C, D but we have established norm attainability

conditions for derivatives in Banach algebras.

Theorem 2.78. [81, Thm. 4] We have the following property:
N

Maasl=2( 2= 1)JAJB.

Theorem 2.78 investigates the lower bound in a standard operator algebra.
This study we have determined lower and upper norm estimate in norm-

attainable derivations in Banach algebras.

Florin, Alexandra [26] estimated the norm of operator Hg, = Ug + Up™ +

(A2)(Vg + Vg™ which is an element on a C*algebra Ay = C*(Ug, Vg uni-taries

: UgVp = ezniHVQUg). Furthetrpmued_talf_eneqdf_c_and_é)_c_[%%_lg_]i

the inequality /Hg 1/ < ! 4+/12—(1— ﬁ )1 - “L;‘w )min{4, /12}.
\ - 11

This improved the significance of the inequality /Hg 2/ <2 2,06 4 2],
Lemma 2.79. /26, Lem. 2.2] For every 0 [0,1], ) X X cos(2m
2

m

1)77:0 \/ 1+] cos 274 - € | m m—1 -
| < 2
Lemma 2.79 determined the upper estimate for almost Mathieu operators but

we have established the upper estimate for norm-attainable deriva-tions.

Lemma 2.80. [26, Lem. 3.1] If (Ym)me%ﬁ IS @ unit vector in I2(Zq), then
z z

2, 2 2
2 mCm Ym + mYm+1Ym_1 Sl + 2(1 + COS 47[0)
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Lemma 2.80 established the upper estimate for a unit vector. In this study we
have determined upper norm-estimates for norm attainable derivations in

Banach-algebras.

Man-Duen, Chi-kwong [50] showed that triangle inequality served an up-per
norm bound of an ultimate estimate for the sum operators that is sup{ T 'RT

+V "SV /: Tand V } are unitaries

= min JR+ AlJJ+ JS— AlJ/: A € C. The result discussed had rela-tionship
to normal dilations, spectral sets and the Von Neumann inequal-

ity.

Corollary 2.81. [50, Cor 3.2] Let P, Q e B(H). Then /P + Q/<sup{UP U +
V "QV /: U andV areunitaries}. The equality holds if and only if there exists

Mo €C, suchthat JP + Qf/= /P + pol /+ JO — ol /.

Corollary 2.81 determined norm of the normal operators but we have

determined upper and lower norm estimates for derivations.

Gil [29] considered commuting matrices of matrix valued analytic function
and established a norm estimate, in particular, two matrices of matrix valued

functions on a tensor product in a Euclidean space were explored.

Theorem 2.82. [29, Thm. 1.1] Let S and T be commuting n x n-matrices and
f(z, w) be regular on a neighborhood of co(S) X co(T ).

Z'k -1 j
T d

(T) sup 175G, w)|.

j,k=0 ik z€&co(s),weco(T )

Then Ji(S, T)/ <

Theorem 2.82 considered the norm estimate for commuting matrices but we
have determined upper and lower norm-estimates for norm attainable

derivations in Banach-algebras.
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Yong, Toshiyuki [95] gave a norm estimate on pre-schwarzian derivatives of
a specific type of convex functions by introducing a maximal operator of
independent interest of a given kind. The relationship between the convex
functions and the Hardy spaces was discussed.

Theorem 2.83. /95, Thm. 4.3] Let =1L <N <M < 1. If f e Ky ),
2(M—N)

then /Tt /< 1+ 1-n2, and equality holds when f = K/ 4.

Theorem 2.83 established the upper estimate for the univalent functions. In
this study we have determined lower and upper norm-estimates for norm

attainable derivations in Banach-algebras.

Corollary 2.84. [95, Cor. 4.5] Let 0 <¢<1, functions f €S,,"; ;
4t

satisfy the inequality JTs /< 1+ 1-2 + 2t

Corollary 2.84 established the upper estimate for the univalent functions. In
this study we have determined lower and upper norm estimates for norm-

attainable derivations in Banach algebras.

Bonyo and Agure [10] characterized the norm ideal on norm of inner
derivation to be equal to the quotient algebra and investigated them when the

normal and hyponormal operators are implementing them on norm ideals.

Theorem 2.85. [10, Thm. 2.1] Let J be a norm ideal in B(H) and B € B(H).
Then fors]IB(H)/J/ < 2d(B).

Theorem 2.85 determined the upper norm estimate for an inner derivation
but we have established norm estimate for a generalized derivation in

Banach algebras.
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Theorem 2.86. [10, Thm. 2.5] Let B(H) be the algebra of bounded linear
operators on a Hilbert space H, J is a primitive norm ideal in B(H). Then for
an S-universal operator B € B(H), fo1g)|B(H)/J/ = foB|J/.

Theorem 2.86 determined the norm of inner derivation but we have con-

sidered norm of generalized derivation in Banach algebras.

Bonyo and Agure [11] investigated the relation between the inner deriva-tion
implemented by Z on norm J and the numerical-range of an operator

Z eB(H) with its diameter and considered application of T -universality on
the relation.

Theorem 2.87. [11, Thm. 2.3] For any operator X e B(H) and each norm
ideal J in B(H), diameter (W (X)) < Jox |/

Theorem 2.87 discussed the upper norm estimate for a the diameter of
numerical range in a norm ideal but we have established norm-estimates in

norm attainable derivations in Banach-algebras.

Okelo, Okongo and Nyakiti [58] investigated the project tensor-product, Vr' ®p

Wr’ of these algebras. It was established that JAs J < //A(l)sf + A(Z)sr// <2/As J
holds if 2= “~jvi ©w; belongs to Ar ®, Br and Ag on
A is a norm-attainable a-derivation given by Ag = A(l)sr + A(Z)Sf.

Lemma 2.88. /58, Lem. 4.2] IféN(l), 5N(2) are norm-attainable o and ar-

1) @

derivations respectively, then on =N~ +ON' IS norm-attainable.

@ 5@

Lemma 2.88 shows the sum of dy inner derivations are norm-

attainable but we have done norm-attainability for a generalized deriva-tion
in Banach algebras.
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Theorem 2.89. /58, Thm. 4.3] Let oy , 5N(1) and 5N(2) be norm attainable a,

o and o -derivations respectively where JoN /= //5N(1)//+ //5N(2)//, then JoN
1 2

1< 81+ 1@ p<2n 1

Theorem 2.89 investigates the norm and upper norm estimate for inner
derivations but we have discussed norm of a generalized derivations in

Banach algebras.

Bonyo and Agure [9] gave the definition of inner derivations implemented
by A, B respectively on B(H) as oa(Y ) =4Y — Y A og(Y) =BY — Y B and

generalized derivation by da,g (Y) =AY =Y B VY €B(H). Further,
a relation between the norms of dp, dg and oa,g on B(H) was specifically

established when the operators A, B are S-universal.

Theorem 2.90. [9, Thm. 3.1] If C eB(H) is S-universal, then Joc |B(H)/= 2/[C/.

Theorem 2.90 determines the norm of inner derivation but we have con-

sidered the norm-attainable conditions in Banach algebras.

Theorem 2.91. [9, Thm. 3.2] Let C, D e B(H) be S-universal. Then

Joc.pIB(H)I < %2 (I6cIB(H)/+ JopIB(H)/).

Theorem 2.91 investigates the upper norm estimate for an inner and
derivations. This study we have determined upper and lower estimates for

norm attainable derivatives in Banach-algebras.

Pablo, Jussi [75] provided theoretic estimate of two functions for the es-
sential norm as a composition operator C,, that acts on the space BM OA
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(bounded mean oscillation for analytic functions); one in terms of the n-th
power gﬁn denoted by ¢ and the other involved the Nevanlinna counting
function.

lim
Lemma 2.92. [75, Lem. 2.3] Let ¢ be an analytic self-map of K. Then

Su ° < 2limsu and
p\w(b)|—»1 r o(b) go//*,z - pn_,w IPnfl
lim su o < 2 lim su ,
pw)(b)\ﬁl r o(b) i/ pHo i n///f

B

Lemma 2.92 determined the upper estimate for analytic self-map but we

have discussed the upper norm estimates for derivations in Banach algebras.

Lemma 2.93. [75, Lem. 3.2] We have

M s P = I S

lo(a)|—1
Lemma 2.93 discussed the upper estimate composition of operators. In this
study we have determined the norm-estimates for norm attainable derivations

in Banach-algebras.

Kingangi, Agure and Nyamwala [43] attempted the result on lower bound of

the norms for finite dimensional operators.

Theorem 2.94. [43, Thm. 2.2] Let Ua s be the Jordan-elementary opera-tor
with A, S e B(H) fixed, and with S =/0. Then JUa s/ > sup,ews(a-s){

IS/A+ //?% }, where Wg(A%, S) is the maximal numerical range of A", S
relative to S, A*is the Hilbert adjoint of S.

Theorem 2.94 established the lower estimate on the maximal numerical
range of operator but we considered lower estimate for norm-attainable

derivations in Banach algebras.
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Corollary 2.95. [43, Cor. 2.3] Let H be a complex Hilbert space and X’, Y be
bounded linear operators on H. Let 0 € Wy (X/*, S)Wx: (Y X’). Then we

have Ux.y > /X JI¥ /.

Corollary 2.95 determined the lower estimate on Jordan elementary oper-
ators but we have determined lower norm-estimates for norm attainable

derivations in Banach algebras.

Odero, Agure, Rao [57] determined the norm of symmetric operator in an
algebra which is two-sided. More precisely, investigated the injection of
tensor norm through the lower bound of the operator. In addition, the
irreducible C*algebra on the inner derivation norm was determined and

Stampfli [87] confirmed the result for these algebras.

Theorem 2.96. [57, Lem. 3.3] Let u e W (T). Then Jot /> 2(JT //2 -
2,172

)™

Lemma 2.96 determined the lower estimate for a derivation but we have

considered upper estimate for derivation in Banach algebras.

Theorem 2.97. [57, Thm. 3.4] Jos//=2/S/if and only if 0 e W (S).

Theorem 2.97 established the norm of a derivation on a numerical range but

we have determined the norm estimate for the derivation in Banach algebras.

Kinyanjui [41] estimated the norm-attainability for elementary opera-tor on
inner-derivation, generalized-derivation, basic-elementary operator and

Jordan-elementary operator under norms.
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Theorem 2.98. [41, Thm. 2.3] Let H be an infinite dimensional complex
nonseparable Hilbert space and ¢[N A(H)] be the set of all norm-attainable

operators. Let Ms 1 € ¢[N A(H)] and X € H be defined by Mg t = SXT then,
Mst X) = ISHIT /.

Theorem 2.98 discussed norm-attainability for basic elementary operators
under but we have determined upper and lower norm-estimates for norm

attainable derivations in Banach-algebras.

Wafula, Okelo and Ongati [93] studied normally represented operator which
is a special type of elementary operator and results showed that elementary
equals its largest single value that is Uj(M) = /M//since

9

AB =A hB+B hA is represented normally, then /Sa g/inj =
Vo_ A B. ®

=
Proposition 2.99. [93, Prop. 4.13] Let H be a complex-Hilbert space and

M : B(H) — B(H) be a basic elementary operator. Then S;(M) = /M//

such that Sj(M) are singular values of M.

Proposition 2.99 found the norm-attainability for basic elementary oper-ator
but we have established norm-attainability for derivations in Banach

algebras.

Theorem 2.100. [93, Thm. 4.14] Let Ua (Y ) = AY B + BY A be nor-mally
represented then, Ua g/cs > JA//B/ for A, B €B(H).

Theorem 2.100 investigated the lower norm estimate for a generalized
derivation but we have considered norm estimate for inner derivation in

Banach algebras.
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Elena, Lorenza, lvan [24] studied properties of continuity of module spaces
for operators of :-pseudo-differential Op,(c) in a Wiener amalgan space with
a symbols c and obtained a bounded result for : € (0, 1) where:=0and:=1
at end points and other operators were unbounded. In addition, it was
exhibited the operator norm for the function : € (0, 1) has an upper bound

which is independent on parameter : (0, 1) was found.

Proposition 2.101. [24, Prop. 4.2] Let m € My(R°%) then a e X(FL%,, LR and «
€(0, 1). Then the operator Op, (b) is bounded on Mm2 with JOp; (B)f fmm= <
C/b/eLav L2 ffmme . Where the constant C > 0 is independent of .

Proposition [2.101] established the upper bound z-pseudo-differential op-
erators but we have considered norm-estimates for norm attainable deriva-

tions in Banach algebras.

From the above literature review it is very clear that norm-attainability for
elementary operators have been done thus we have determined norms of
derivations as an example of elementary-operators when they are im-
plemented by operators that are norm attainable and we have estimated the

norms of derivations in Banach algebras.
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Chapter 3

RESEARCH
METHODOLOGY

3.1 Introduction

The research methods involves the use of known inequalities like Cauchy-
Schwarz inequality, triangle inequality, H olders inequality, Bessel’s in-
equality. Technical approaches like direct sum, polar decomposition and

tensor product were useful to our work.

3.2  Known inequalities

3.2.1 Cauchy-Schwarz inequality

Let the inner product space be S and /5 /= s, S ¥s &S then

Is.t|</5/t) Vs t €S.Indeed,ift =0 and s,0 =0 then the
/ </ - -
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2 ’ ’ ’ ’ o ’ ’ r o1 ’ ’ roor
ot,S—ot $,8 —as,t —a[t,s —at,t ] leta[t,s —at,t]=0.
t,s

If we choose a (1, then we have

t, s ,
0 <s,s — —s,tt
t
< k- ls”t;!zgmultimy by /)
M
BIERE st
KT

IN

IN

Taking positive square roots it yields | s', t | < //S/////t'//.

Cauchy-Schwarz inequality will be used to determine the upper norm-

estimates for norm attainable derivations in Banach-algebras.

3.2.2 Triangle inequality

v, t €S, f5+t)< f5+ Jt/. Indeed s +t)f =s+1t, s+t

K+t = s+t s+t
= s s+s s+t
= s, s+s,t+s t+tt
= §s,s+2Res, t+t,t
< 5,5+ 2|s, t]+¢t,t
= 5+ 2801+ S
<(sl+ MY’

Taking positive square root it yields /s +t)/< |5+ Jt/.
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Triangle inequality will be used to determine the upper norm-estimates for

norm attainable derivations in Banach-algebras.

3.2.3 Ho"lder’s Inequality

Lets, Iyxandty ely where x> 1 and 1/x+1/y = 1, then K =1 tksk| <
(o Sioy( o teov)m, 3
Ykt || el

Indeed if zszl Isk]* = 0 or kazl Ity)” = 0 then the inequality holds.

Assume =1 [su& 0and T =1 |t £ 0
thenk =1, 2, .. by Young’s inequality then IS|,IIt|,IZ
Iskl’ It” (zkw=1 |sk|x)1/ O =)
Ux “Camd + Uy =1 md
hence (  «*u o Wk w ) Ux+1ly=1

> D T S
0 0 X\ 1/% Zoo 1/
= Tt Isktk] < (T k= Ik T (T ket 1)

1y <

H older’s Inequality will be of significance in the determination of the upper

norm-estimates for norm attainable derivations in Banach-algebras.

3.2.4  Bessel’s inequality

Let[vi]wizl be an orthonormal set in an inner product space D then for an

arbitrary d €D, Zwizl | d, vj |2 < //d//2. Indeed we are supposed to show
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that 0 < Jd — mi:1 d, v Vi//z. Let aj = d, vj
Zmi
0 <Jd- oci\/_il//2

<d-— ojvj,d— ajvj
=1 i=1

ii m Z m m m
> > “i >
<dd-d aiVi — oiVi, X + aiVioiVi
Y =t i=1 o= i=1
m m m m
< i - %d,vi - o Vi, X + %io Vi, Vi Vi, Vi
ifl Z i=1 . =1 i=1
m m m
— — 2
< i - oigi+ ai ait lail
=1 i=1 i=1
R
2
< ) - _, il
Zm 2
=1 lail” < /-

Bessel’s inequality will be used to determine the upper norm-estimates for
norm attainable derivations in Banach-algebras.

3.3 Technical approaches

In this section technical approach such as tensor product was used to solve
the problem stated. We employed polar decomposition and direct sum
decomposition in determining norm-attainability conditions and norm es-

timates for derivations.
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3.3.1 Tensor product

If Sand T are vector spaces over K, let M be the subspace of the vector space

KsxT then the vectors af(s, t) + ﬁ(s', t) — (as + ﬂsl, t) and a(s, t) +

B (s, t') — (s, at + /)’t’) Va, f eKands, s S and t, t eTare generated.
Then the space of the quotient Ksyt /M is the tensor product of S and

®
T which is denoted by S T.

The technical approach was useful in determining norm estimates.

3.3.2  Direct sum decomposition

A vector space Y is a direct sum of two subspaces A'and B of Y written as Y

=A EBBl, if eachy €Y is uniquely represented by y = a + b', a eA', b B.

Direct sum decomposition was used to prove that various derivations are

norm-attainable.

3.3.3  Polar decomposition

Let X e B(H), then a partially isometry W exists with initial space R(X") and
final space R(X) such that X = W (XX = (xx92w.

Polar decomposition has been used to find square roots of operators on

Lemmas and theorems in our proofs.
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Chapter 4

RESULTS AND
DISCUSSION

4.1 Introduction

In this chapter, we give results obtained on norm-attainability conditions for
derivations, upper norm estimates for derivations and lower norm estimates

for derivations in Banach algebras.

4.2  Norm-attainability conditions

In this section, we give results on norm-attainability conditions for deriva-

tions. We begin with the following proposition.

Proposition 4.1. Let H be a complex Hilbert space and B’(H) the algebra of
all bounded linear operators on H. A e B’(H) is norm-attainable if and only

if its adjoint A*e B,(H) is norm-attainable.
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Proof. Given A e B'(H) IS norm-attainable then we need to show that A e
B’(H) IS norm-attainable. If A e B'(H) is norm attainable then by definition

of norm-attainability there exist a unit vector X € H with //X///: 1 such that

JAX = N Thatis, JAA ™ = JA%X ). Let
n= //AK'X'// , then # is a unit vector such that /7 /= 1 this implies that

//Al*;y//: //A(//: //A,*//. Hence, A,*is norm attainable. =

The next result gives norm-attainability conditions for operators via the

essential numerical range. An analogy of the same can be found in [65].

Proposition 4.2. Let A e B(H), 4 eWess(A/) and n > 0. Then there exists A’O
eB(H) such that JA /= JAo/with JA — 40> 1.

Proof. See [65] for the proof. O

Remark 4.3. The set of all norm attainable operators is denoted by N A(H),
the set of all norm-attainable self adjoint operators is denoted by N A*(H) and

the set of all norm attainable elementary operators is denoted by Ena[B(H)].

At this point, we consider norm-attainability in a general set up. We begin

with the following proposition.

Proposition 4.4. Let D be the unit disc of a complex Hilbert-space H and A :
H — H be compact and self adjoint. Then there exist x € D such that JAx/ =

AT

Proof. By the definition of usual norm, we have JA/ = supyxep JAX/. So, there
exist a sequence X1, X2, ..., Xn € D such that JAxn/= JA/. But Ais
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compact so let yg = lim,,_,o, Axn exist in H. Suppose Y = span{xy, x2}, then it
is a closed subspace of H. If we pick a subsequence xnk of Xp, then it
converges weakly to x and we have done X, X = lim_,o Xnk , X and | Xpk, x | <
Pk J) = 1 for all k. Therefore, /x/ <1 but we cannot have Jx/ < 1 since
then JAX/ = JAJK)J < JT Jwhich is a contradiction. Thus, Jkx/=1thatisx €

D. Hence, the existence of x is shown and thus completes the proof. [J

At this point, we consider g-normality and g-norm-attainability.

Lemma 4.5. Let A e N A(H) then A is g-norm attainable if it is g normal.

Proof. Let A € N A(H) be g normal that is A%A* = AAY, Raising A* to power
g and using it to replace A* we have Aq(A")q = (A*)qu. This shows that A% is
normal. Now A%a* = A-aY by Fuglede-property. Therefore, A is q normal.
However, A € N A(H) and AY'is normal so it follows that there exist a unit
vector X € H such that //Aqx// = //Aq//, for any g € N. Hence, A% is norm
attainable. [

Remark 4.6. Every norm attainable operator and every self adjoint op-erator
is g-norm attainable and g normal for any q  N. However, the converse
need not be true in general see [66].

Lemma 4.7. Let N Ag(H) be the set of all g-norm-attainable operators on H.
Then N Aq(H)is a closed subset of N A(H) which is algebraic if and only if
for any A e N A(H), A is g-normal.

Proof. Let A be g-normal and pick 4 € K. By premultiplying by 1 and
postmultiplying by g as a power on the normal A we have (M)q(M)*=
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(M)*(M)q. This proves the normality of 24. Now if A € N A(H) then the
converse is true if we take limits over a sequence of vectors in H and also by
Proposition 4.4. Therefore, A is a g-normal. [J

Theorem 4.8. Let A e N Ag(H). Then the following conditions are true.

(i). A*is g-norm-attainable.

(ii). V AV is g-normal, for a unitary operator V. &N Aq(H).

(iii). A tis g-norm attainable if it exists.

(iv). Ag = A/G is g-norm-attainable for some G which is a uniformly

invariable subspace of H which reduces to A.

(V). Ag is uniformly equivalent to A implies Ag is norm-attainable.

Proof. (i). Since A € N Ag(H) then from Lemma 4.5 AY s g-norm at-tainable

and so (A*’)q is norm attainable. Consequently, A*is g-norm attainable.

(ii). Since V unitary then V'V *=V *V = |, where | is the identity operator.
By definition of norm-attainability and Lemma 4.5 we obtain the
desired results.

(iii). If A * exists then since A is g-norm attainable, Alis g-norm attain-able.
Now since A is g-norm-attainable then by Lemma 4.5 Al is g-norm-
attainable. But (Aq)_l = (A_l)q is g-norm-attainable. So At s Q-
norm-attainable.

(iv). Follows from the fact that G invariant under A.
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(v). Follows from (iii) since V is unitary.

O

Corollary 4.9. Let Aq, Aqo € N Aqg(H) be commuting operators, then A, Ag €
N Aq(H).

Proof. Since A, Aqo € N Ag(H) are commuting then A, Ag are commuting
normal operators. By supraposinormality of operators in dense classes we
have A, Ag € N Aq(H) and hence are norm-attainable. Indeed, Aquo = (AAo)q
= (AOA)q which is normal and norm attainable. Hence, A, Ag € N Ag(H). []

Remark 4.10. Not all g-norm attainable operators are g normal. Thus, the
following example shows that the two commuting g normal operators need

not be g normal.

01 00
Example 4.11. Let A = 0 10 andAg= 0 1.NowA+ A =
1 1and(A+A02 = 1 2 arenotnormal. So A + Ag is not
01

2-normal. We note that A is self-adjoint.

Lemma 4.12. The sum of norm-attainable operators is norm attainable.

Proof. Consider A, B €N A(H). We need to show that the sum of A

and B is norm attainable. For A, B to be norm attainable then there
exist a unit vector x e H such that /x/=1, MA +B)Xf= [AX +
Bx/=[A+Bf= A+ [BJ- Since JAX +BX[< JAX)  + [BXf<

IAJ+ [Bx] < JAJ+ /B then for an orthonormal sequence X, € H _
we have lim,_,.(/Axn + Bxn/) = JAX + Bx/. But since A and B are
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norm-attainable we have JAx + Bx/ = J(A + B)x/ = JA + Bj is norm-
attainable. [

Theorem 4.13. A norm-attainable operator perturbed by an identity op-

erators is norm attainable.

Proof. Let B € B(H) be norm attainable. Since B is norm attainable then there

exist a unit vector xo € H, an identity I € B(H) and for every

e > 0 we have J(BD)xo/J < /Blxof + ¢ < BJNKoJ + &. Since ¢ is arbitrary
then it follows that /(B)xo/ < /BN //xo/ = /B/. Hence,

B0/ = B/, =

At this point, we consider norm attainability for elementary-operators.

We begin with inner derivations.

Lemma 4.14. Let op € E[B(H)], then Ja is norm attainable if there exists a

unit vector xo e H, A e N A(H) and Axg, Xg € Wess(A).

Proof. For an operator A € N A(H) we know that an operator is norm-
attainable via essential numerical range from proposition 4.2. Now, we need
to show that dp € E[B(H)] is norm attainable. By the definition of inner
derivation, da = AYg — YpA. Since A is norm attainable then there exist a unit
vector xg € H such that Jxo/ =1, JAxo/ = JA/. By orthogonality let yg satisfy
Yo {AXo, Xo} and a contractive Yq be defined as a linear transformation Yq : Xg
— xp With Axg — —Axg as yg — 0. Since Yg is a bounded linear operator on

H, then by norm attainability /Yoxo/= /Yo/=1and

JAYoxo — YoAXo/ = [Axo — (=Axo) /= 2/A ).
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It follows from Lemma 3.1 in [87] that Joa/ = 2/A/. By the inner product
AXg, Xo = 0 € Wess(A), it follows that Joa) = 2JA/. Therefore, JAYg — YoA/ =
2/AJ = [oa/. Hence, da is norm-attainable. [

Lemma 4.15. Let A, Ag € B(H). If there exist unit vectors y and yg on

H such that A, Ag are norm-attainable then dp po is also norm-attainable.

Proof. Given the operators A, Ag € B(H) are norm attainable then we need to
show that Ja ao is also norm attainable. We define the generalized derivation

by da .m0 (Y ) =AY — Y Ap. Since A, Ag are norm-attainable then there exist

unit vectors y and yp on H such that /= o/ =1, JAy/= JAJand JAgyo/ =
JAo/. If y and Ay are linearly dependent then we have JAy/=n A/l where ||

=1land|Ay,y|=/AJ It follows that | Agyo, Yo | = /Ao/ which implies that
1Aoyol/ = ¢//A0//S/0 and |¢| =1

Therefore, = 7 y=—n IfYisdefinedasY:y—yo
//Ao// N

and yo — 0, J¥ /= 1then (AY — Y Ag)yo = ¢(JAJ + JAo/)yo which implies
JAY =Y Aoff = KAY =Y Ao)yo/ = A+ JAof = Joano /. Hence, da o is norm-
attainable. [J

Lemma 4.16. Every inner derivation is norm attainable if and only if it is self
adjoint.

Proof. Let da € B(H) be norm-attainable then we show that da = da" Now
since oa € B(H) is norm attainable then there exist a contraction

Y eB(H) such that JoaY /= [oa/. Thatis, Joa™oaY /= //JAZY /. Let
n  Hbedefinedasy = is contractive such that s =
€ N 1Al

Jon) = [Joa”). Hence, da is self-adjoint. Conversely, let da be self-adjoint.

Now since da” is norm-attainable from the first part, then there exists a
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contractive M e B(H) such that Joa™™// = Joa”), that is Jopon ™M/ =
2 5,

JoaM /. Let ' be denoted by {=a* Where J{J/= 1 such that Joal) =
Jon”) = [oa/. Hence, da is norm-attainable.

Lemma 4.17. Every generalized derivation is norm-attainable if and only if it
is implemented by orthogonal projections.

Proof. Let A, Ag € B(H) be orthogonal projections. Indeed, to show that a
generalized derivation is implemented by orthogonal projections A and Ao, it
is enough to show that it is self adjoint if and only if it is normal as proved in
[44]. Let da a0 : B(H) — B(H) be bounded linear operator on B(H). Then
there exist a unique bounded linear operator da A% : B(H) — B(H) such that

oam X, Y =X oaaT0 Y, forall X, Y eB(H). Now,

Ban”™ oY= sup damo XY
IX[F1
< sup fopno KNI A
IXIEN [FL

P

So, we conclude that da A% is norm attainable. Conversely, let oa a0 be norm
attainable. We need to show that it is implemented by orthogonal
projections. This follows immediately from [44] and this completes the

proof. [
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4.3  Upper and lower norm estimate for norm-

attainable derivations

In this section, we give results on upper and lower norm estimates for norm-
attainable derivations. We consider both inner derivations and gen-eralized

derivations. We begin with the following proposition.

Proposition 4.18. Let C’, D eN A(H) and ¢ p be bounded then foc p/f <
i+l

Proof. Since dc.p- is bounded then for fixed C/, D eN A(H) we have

J5co(X)] < JCX —XD [ < JCX+ IXD [ < JCJIX [+ JXJD /. Let X be of
norm 1 and take supremum over X N A(H) then foc p [/ < /,C'//+ //D///. O

Remark 4.19. If C = D then féc /<2/C .

Next, we consider upper bounds in the unit ball of N A(H) denoted by
[NA(H)]o.

Lemma 4.20. Let [N A(H)]o be the unit ball of N A(H) and S be a fixed
element of N A(H). Let X € [N A(H)]o then /os|ina(H)Jo /< 2d(S).

Proof. Since X &[N A(H)]o has norm 1 then we have /os|naH)10 (X)/=
ISX=XSiNAH)T0 = NS—AX=X(S=A)INAH)T0 < IS—AIIXINAmHY0+ XIS —
AINA(H)]o - Take the supremum over X €[N A(H)]o, we obtain /os|[na(H)Jo /<
2/)S — 2/ and considering the infimum over A € C we obtain /os|naH)jo /< 2
infec /S — /= 2d(S). D

79



Remark 4.21. The restriction of da|na(H)jo 1. Ja to [N A(H)]o is a bounded

linear operator.

Next we give an extension of Lemma 4.20 to a generalized derivation in the
following theorem.

Theorem 4.22. Let S, S be fixed elements of N A(H) then

//55,80 I[NA(H)]Q // S //65,50 //

Proof. Since X €[N A(H)]o has norm 1 then we have [6s so [[NA(H)]o (X)//=
JSX — XSo/. Following proof of lemma 4.20 anologously we have

//6 S,Sol[NA(H)]o(X)// S //8 N l////x //[NA(H)]o ¥ //D( ////5 0 - /1//[NA(H)]0.

Taking the supremum over X [N A(H)]o we obtain

10,50 IINAH)Jo /< Infrec(fS — A+ [So = A/) = [6s,50 /. N

Corollary 4.23. Every generalized derivation ds 5o is norm-bounded.

Proof. This follows immediately from [87] and from Theorem 4.22. This

completes the proof. [

Proposition 4.24. Let S, Sg be fixed elements of N A(H) then

Pl =PI Pt

Proof. Let , ¢ and x be unit vectors in H and ¢, ¢ be positive linear func-
tionals such that ¢ ® 5 : H— Cand ¢ ®¢: H — C be of rank 1 defined as
(den)x = ¢(X)n and (p@EX = p(X)¢, VX € H, Jk/= 1. Now we have that /(¢
@ nx)/=sup{ (¢ @)X/, xJ=1} = |¢(X)| = |¢|. Similarly, we
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have o ®EX//= o). Letting S = ¢ and Sg = p&E then JS//= Jp/and JSo/

= Jo/. Now from Corollary 4.23 we have that every general-ized derivation
is norm-bounded this implies that /os so [[Na(H)10 (X)) = 165,50 (X)/ where X
e [N A(H)Jo. Therefore, Bsso |pnap /- > /SX — XSo/f implying that
10s,50 [INA(H)T0 //2 >[/5)+ //So//jz. Taking positive square root on both sides
we obtain /6s,so [[NA(H)Jo /= /6s,50 /= I8/ + [So/. T

Remark 4.25. If S = Sg then Jos so /= Jos)/=2/S/.

Remark 4.26. From Theorem 4.22 and Proposition ?? it is easy to see that

os,s0 /= IS/ + [Sof and hence Jos/ = 2/S}.

Theorem 4.27. Let S, Sg e N A(H) and a1 € Wo(S) and ap € Wo(Sg).

Then fos so /= (I8 = loal)"* + (B0l = lazl®)™

Proof. By definition of Wp(S) we have x, € H such that /Sx,/= /S/and Sxp,
Xn — a1 for a; € Wp(S). This argument follows for Wo(Sg) and ap € Wo(Sp).
Let SXn = dnXn + BnYn SO SoXn = onXn + Anyn Where Xn, Yn =0, Jynf/ = 1. Take
UnXn = Xp and Upyn = —yp for Uy = 0 in {Xn, Yn}. Then JSUpxn — UnSoXn/ =
P+ fiodl = 16l + Bal. But [6n] + Bl = (B~ 10nl)" = &0 + (ol -
|[>’n|2)1/2 — &n). Since &, is arbitrary and letting n — oo, so it follows that
Psso 1= KSUn — UnSo¥al = |6l + 18l = (B = laal" + (ss0ff -

2,1/2
o). O

Corollary 4.28. Let xp, yn = 0 then 0 € Wp(S) and if 0 € Wp(Sp) then /os sof >
IS+ 5ol

Proof. Follows immediately from definition of Wg(S) and the Theorem 4.27.
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Chapter 5

CONCLUSION AND
RECOMMENDATIONS

5.1 Introduction

In this chapter, we give the conclusion and recommendations based on the
objectives of the study and the results obtained on norm-attainability
conditions, upper norm estimates and lower norm estimates for norm-

attainable derivations in Banach algebras.

5.2 Conclusion

We give the conclusion regarding the problem stated on Section 1.3 of our

work by highlighting the results obtained in our study .

In objective one, we established norm-attainability conditions and con-
cluded that JAYoxo — YoAxo/ = JAxo — (—Axg) /= 2JA) = [or/.
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In objective two, we determined the upper norm estimates for norm-
attainable derivations and showed that Joa g/ < JA/+ /B/ and for the lower
norm estimates for norm-attainable derivations we showed that Jos sof > /S/
+ [Sol.

Therefore, we have given results on norm-attainability conditions for

derivations, the upper and lower norm estimates for norm-attainable

derivations in Banach algebras.

5.3 Recommendations

In objective one, we have established results on norm-attainability con-
ditions for derivations in Banach algebras. We recommend that further study
can be done to establish norm-attainability conditions for deriva-tions when

they are implemented by transaloid operators normaloid op-erators.

In objective two, we have determined upper and lower norm estimates for
norm-attainable derivations in Banach algebras. We recommend that further
studies can be done to determine upper and lower norm estimates for norm-
attainable derivations when they are implemented by transaloid operators

and normaloid operators.
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