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INTRODUCTION 
 
 
 
 
 
 

1.1 Mathematical background 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 1 
 
 

 

INTRODUCTION 
 
 
 
 
 
 

1.1 Mathematical background 

Banach algebras are key in several studies in mathematics and the ad-

vancement in both trivial and non-trivial cases in mathematics and quan-tum 

mechanics. The norm of a derivation was first introduced by Stampfli [87], 

who determined the inner derivation δT0 : A0 → T0A0 − A0T0 which acts on 

Banach algebra B(H) on Hilbert space H. Further, ∥ δT0 ∥= inf 2 ∥ T0 − λI0 ∥ 

for every complex λ was shown. For a normal T , then ∥δT0 ∥ can be 

expressed as the geometry of the spectrum of T0. Johnson [37] established 

method which apply to a uniform convex spaces with a large class, that is the 

formula ∥δT ∥ is false in l
r
 and L

r
(0, 1) 1 < r < ∞, r =   2. Johnson [36] found 

that B(H) derivation is a map δ : B(H) → B(H) with δ(P S) = P δ(S) + δ(P )S 

P, S ∈ B(H). Such derivations are necessarily continuous and if S ∈ B(H) 

then δS(P ) = P S − SP is a derivation in B(H). 
 
 

 

Gajendragadka [27] was concerned with computation of norm of deriva- 
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tion and Von-Neumann algebra. Specifically when the Von-Neumann 

algebra act on separable Hilbert space H, K ∈ U was proved then δK a 

derivative induced by K, then ∥δK |U∥ = 2 inf ∥K − M∥, M in the centre U. 

Therefore, Anderson [5] in his investigation on normal derivation the 

operators A, C ∈ B(H) were proved that A is normal if AC commutes, for 

every Y ∈ B(H), ∥δA(Y ) + C∥ ≥ ∥C∥. Therefore, the inequality showed that 

the kernel and the range δA is orthogonal to δA which is commutation of {A}
′
 

of A. Kyle [38] examined the numerical-range of in-ner derivation and the 

element generating the relationship between them. Kyle [39] studied on 

norms of inner derivations and used their properties and concluded that a C∗-

algebra is a closed sub-set of entire derivation(s) which forms the inner 

derivations set and obtained the result which was a converse by Stampfli 

[87]. 

 

Charles and Steve [16] answered the question when X = K by struc-ture 

characterization of compact derivations of C∗-algebras. Moreover, the 

structure of weak compact derivations of C∗-algebras was determined and as 

immediate corollaries of these results, conditions that were nec-essary and 

sufficient were obtained so that C∗-algebras admits non-zero compact or 

weakly compact derivation. Stampfli [88] studied operators on Hilbert space 

and their properties inducing a derivation whose closure is self-adjoint after 

range such operators are termed D-symmetric and then characterized 

compact D-symmetric operators. Further, considera-tion was given to normal 

derivations and then presented an irreducible, not essential normal D-

symmetric operators as an example. Erik [23] established that any C∗-algebra 

F on a Hilbert space H with cyclic vec-tor whose derivative property δ of F 

into B(H) an operator y existed in 
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B(H) : ∀ f ∈ F, δ(f) = [y, f] = yf − f y. 

 

Mecheri [53] established that T (X) is linear for a m-linear derivation and 

hence, the topology of Von-Neumann algebra X of type I is automatically 

continuous in measure with center m and the semi-finite trace η which is 

normal is faithful. Therefore, K(X) is the algebra of all η-measurable 

operators affiliated with X. Mathieu [48] proved that for bounded deriva-

tions that are non-zero then the product of two prime C∗-algebras are 

bounded. In Volker [92] two automatic continuity problems for deriva-tions 

on commutating Banach algebras were discussed : (a) Derivation on a 

commutative algebra is mapped onto the radical, and: (b) Banach algebras 

are continuous on semiprime derivations. It was proved that 
 

(b) implies (a). Furthermore, (b) proved that for special cases Banach 

algebras are reduced to a small class and also similar results were given on 

epimorphisms. In fact, it was shown that semisimple Banach algebras were 

characterized with no topologically nilpotent element other than zero being 

among the commutative Banach algebras; known examples of discontinuous 

derivations on commutating Banach algebras depended ma-jorly on the 

existing nontrivial nilpotent elements which was on a general-ized derivation 

of semiprime Banach algebra and that nilpotent elements are continuous on a 

commutative Banach algebra without nontrivial. 

 

Bresar, Zalar [13] showed that a Jordan ∗-derivation is the map δa(x) = ax − 

x∗a for fixed a ∈ U; hence, the derivation is inner and the follow-ing are the 

results obtained. Douglas [21] continued the study of Ws(N) which was 

considerably more amenable where Archbold [1] defined the smallest 

numbers to be [0, ∞] and introduced two constants W (N) and Wx(N) : d(n, 

Q(N)) ≤ W (N)∥D(n, N)∥ ∀ n ∈ N and d(n, Q(N)) ≤ 
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Ws(N)∥D(n, N)∥ ∀ n = n∗ ∈ N. Dutta, Nath, Kalita [22] showed that if α1 and 

α2 are δ-derivation and δ
′
-derivation on (T, γ) and (T ′, γ′) and an arbitrary 

element n = ∑1 y1 ⊗x1 of (T, γ) ⊗ρ(T ′, γ′), then a derivation D on δ ⊗δ
′
 

exists in (T, γ) ⊗ρ(T ′, γ′) satisfy α(n) = ∑1[(α1y1) ⊗x1 + 
⊗  

y1 (α2x1)] in which many enlightening properties were possessed. Fur-

thermore, the validity of the results was investigated on ∥α∥ = ∥α1∥+∥α2∥ and 

sp(α) = sp(α1) + sp(α1). 

 

Rajendra, Kalyan [77] showed that for the nth order commutator 

 

[[[k(B), Y ], Y ], ..., Y ] a formula was obtained in terms of the Frechet 

derivatives S
m

k(B) in which the formula illustrated was used to obtain 

bounds for norms of a generalized commutator k(B)Y − Y k(B) and their 

higher order analogues. In Joel [35] the numerical range of 2 x 2 matrices 

was determined, the convex of the numerical range for any Hilbert space 

operator was established by Toeplitz-Hausdorff theorem and relation of 

numerical-range to that of spectrum was discussed. Further, closure of the 

numerical-range is contained in the spectrum, the intersection of closures of 

the numerical-range of all operators were asserted by Hildebrandt’s theorem 

that are similar to operator D was given precisely and discussed the convex 

hull of the spectrum of D. Considering results on special cases Blanco, 

Boumazgour, Ransford [12] established that ∥P XQ + QXP ∥ ≥ ∥P∥∥Q∥. 
 

 

Chi-Kwong [17] established that for a n x n matrix X, the numerical range W 

(X) has many properties which can be used to locate eigenval-ues, to obtain 

norm bounds algebraic and analytic properties were de-duced which will 

help in finding the dilations of simple structure. The 
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numerical radius of Y defined as ω(Y ) = maxµ∈W (Y )|µ| and ω˜(Y ) = 

minµ∈W (Y )|µ| is the distance of W (X) to the origin which is related to 

numerical range. ω(X) and ω˜(X) are useful quantities in studying 

convergence, stability, perturbation and approximation problems. Let the 

linear operators Xi and Yi, 1 ≤ i ≤ n act on separable Hilbert space H. Hong-

Ke, Yue-qing [33] proved that sup{  ∑n
i=1 RiY Si∥ : Y ∈ B(H), ∥Y ∥ ≤ 1} = 

sup{  ∑n
i=1 RiT Si∥ : U U∗ = T ∗U = I, U ∈ B(H)}. Therefore, there exists an 

operator Yk which proved that ∥Yk∥ = 1 im-plying ∥ ∑n
i=1 RiYkSi∥ = sup{  

∑n
i=1 RiY Si∥ : Y ∈ B(H), ∥Y ∥ ≤ 1} only if there exists a unitary U0 ∈ B(H) 

so that ∥ ∑n
i=1 RiU0Si∥ = sup{  ∑n

i=1 RiY Si∥ : Y ∈ B(H), ∥Y ∥ ≤ 1}. 
 

 

Nyamwala and Agure [54] proved that ∥AXM +M XM∥ = 2∥A∥∥M∥ and in 

this study it was shown that ∥A∥∥M∥ ≤ ∥AXM+AXM∥ ≤ 2∥A∥∥M∥. In 

Nyamwala [55] the symmetry of a multiplication operator norm which is 

two-sided was calculated as TP Qk X = P XQk + QkXP defined on a C∗-

algebra C∗P, Qk, 1 generated by P and Qk for an idempotent X related to P 

and Qk. In addition, Okelo, Agure and Ambogo [61] established the Jordan-

elementary operator norm UM ,N : B(H) → B(H) given as UM ,N = M Y N +N 

Y M, ∀ Y ∈ B(H) and M, N in B(H), showing that  UM ,N ∥ ≥ ∥M∥∥N∥ and 

then characterized the norm-attainable operators using this norm. Okelo [68] 

investigated that ideals of norm-attainable elements implemented by inner 

derivations of a C∗-algebra has relation to primitive ideals. Since there is a 

relationship between the constants A(ξ) and Asξ ideals of C∗-algebras and 

ideals that are primitive then related results were given. 
 
 

 

Okelo, Agure and Oleche [66] gave results on necessary and sufficient con- 
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ditions for norm-attainable operators also studied norm-attainable op-erators 

and generalized derivations. Okelo [65] extended the work by presenting 

new results on conditions that are sufficient and necessary for norm-

attainable operators on Hilbert space, elementary operator and gen-eralized 

derivation was established. Further, Okelo [65] established that a unit vector 

exists λ ∈ H, ∥λ∥ = 1 so that ∥Sλ∥ = ∥S∥ with Sλ, λ = ε. Hoger [32] showed 

that every Jordan derivation of the trivial extension of A by M, under some 

conditions, is the summation of the derivative and anti-derivative. Okelo, 

Ongati, Obogi [62] studied norm-attainable operators that are convergent and 

established projective tensor norm via norm-attainable operators. 
 
 

 

Wickstead [94] showed that if atomic Banach lattice Z having a norm order 

that is continuous, X, Y ∈ T r and MX,Y are operators on T r
(Z) given as MX,Y 

(A) = XAY, then ∥MX,Y ∥r = ∥X∥r∥Y ∥r with no real β > 0 hence ∥MX,Y ∥r = 

β∥X∥r∥Y ∥r. Okelo [72] outlined the theory of self-adjoint and norm-

attainable operators then presented norms of operators in Hilbert spaces. 

Sayed, Madjid, Hamid [80] proved that for a linear map 
 

∆ : U → U, ∆(XY ) = ∆(X)Y +∆X(Y ) for each X, Y ∈ U is a derivation, then 

any two derivations ∆ and ∆
′
 on a C∗-algebra U exists a derivation 

 

δ ∈ U such that ∆∆
′
 = δ

2
  if and only if either ∆

′
 = 0 or ∆ = f∆

′
 

 

for any f ∈ C. Clifford [18] studied hypercyclic generalized derivations 

acting on separable ideals of operators then identified concrete examples and 

established some conditions that are necessary and sufficient for their 

hypercyclicity. Particular Banach algebras acted on by the dynamics of 

elementary operators were considered. 

 

Oyake, Okelo and Ongati [74] characterized inner derivations in Banach 
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algebra and investigated inner derivation properties that are implemented by 

norm-attainable operators such as measurability, normality continu-ity, 

linearity, trace and spectra of inducing operator and determined the norms. 

The result showed that the derivations admitted tensor norms of operators. 

Kinyanjui [42] characterized norm-attainable elementary op-erator and 

showed if operators M, P and δM ,P be norm-attainable, then δM ,P is 

normally represented. In Okelo and Aminer [67] norm inequali-ties of new 

matrices that are norm-attainable operators, were presented as well as 

mapping on matrices were characterized. Okelo and Aminer [67] completely 

characterized norms that are bounded, gave the extension of orthogonality 

via norm-convergence in N A(H)-classes. Okelo [64] consid-ered orthogonal 

and norm-attainable of operators in Banach spaces, gave in details the 

characterization and generalizations of norm-attainability and orthogonality. 

The conditions that are sufficient and necessary for norm-attainable 

operations on a Hilbert space, result on kernel of elemen-tary operators and 

the orthogonal range when done by norm-attainable operators in Banach-

spaces were given. 

 

Odero, Agure, Nyamwala [56] showed that the mapping ∆Q′R′ : B(H) → B(H) 

is a generalized derivation of two operators that are bounded Q
′
, R

′
 ∈ B(H) 

induced by Q
′
 and R

′
 were defined by ∆Q′,R′ (Y ) = Q

′
Y − Y ′R, therefore, the 

norm ∥∆Q′,R′ ∥ = ∥Q
′
∥ + ∥R

′
∥ for all Q

′
, R

′
 ∈ B(H) was given. Okelo and 

Mogotu [59] gave norms of commutators of normal op-erators for generalized 

inequalities and established the commutations of derivation for orthogonality 

and norm inequalities. Okelo [60] character-ized norm-attainable classes in 

terms of orthogonality by giving norm-attainability conditions that were 

necessary and sufficient for Hilbert 
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space operators first and the orthogonality result on the kernel and range of 

norm-attainable classes in elementary operators, implemented by op-erators 

that are norm-attainable were given. Okelo [63] gave conditions for linear 

functionals in Banach spaces for norm-attainable operators, el-ementary 

operators and non-power operators on H and also for power operators a new 

notion of norm-attainability was given and then charac-terized norm-

attainable operators in normed spaces. 

 

Abolfazl [2] determined the norm of inner Jordan ∗-derivations δS : T → ST 

− T ∗S that act on the Banach algebra B(H). It was shown that ∥δS∥ ≥ 2 

supλ∈W0(S) |ℑλ| in which W0(S) is the maximal numerical range of operator S. 

Gyan [28] obtained precisely when zero belongs to maxi-mal numerical 

range of composition operators on H and then character-ized the norm-

attainability of derivations on B(H). In Okelo [71] norm-attainability for 

hyponormal operators that are compact were character-ized, sufficient 

conditions for a compact hyponormal operator that is lin-ear and bounded on 

an infinite dimension for a complex Hilbert space to be norm attainable were 

given. Further, the structure and other proper-ties of compact hyponormal 

operators when they are self-adjoint, normal and norm attainable with their 

commutators were discussed in general. 

 

Lumer [46] obtained a sharp estimate not only from |sp(R)| = spectral radius 

of R but also |sp(R)| in terms of sup(|X(R)|, |X(R
n
)|

1/n
), for an even integer n 

which is positive. These are 

√  

|sp(R)| ≤ 3 sup(|X(R)|, |X(R
2
)|

1/2
) 

√  

|sp(R)| ≤ ζn sup(|X(R)|, |X(R
n
)|

1/n
), n = 4, 6, 8..., where ζn = 7,  

generally, ζn can be calculated as a polynomial root which depend on 
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n. The question about the constants was answered completely for an estimate 

∥R∥ ≤ c1|X(R)| + c2|X(R
2
)|

1/2
 which was expressed as 

 

sup α(|X(R)|, β|X(R
2
)|

1/2
) and then compared the estimates. Fur-ther, the 

aspects of general problem were discussed and then gave ap-plications by 

introducing an invariant δ(C) defined for all unital Banach algebra C. 

 
 

 

Briggs [14] studied the algebra of functions that are continuous on [0, 1] that 

are ∥.∥w-approximate polynomial; that is point-wise functions of limit of 

∥.∥w-Cauchy polynomial sequence. Let C
1
(W ) be the algebra of all such 

functions, for comparison purposes two other algebras of functions were 

defined. If W ∈ C[0, 1] let L(W ) be the zero set of W and C(
1

w) be the 

subalgebra of C[0, 1] that consist p such that p
′
(x) existed for every x ∈ [0

′
1] 

\ L(W ), the function W p
′
 is continuous on [0, 1] since (W p

′
)(x) = 0 if x ∈ 

L(W ), (W p
′
)(x) = W (x)p

′
(x) if x ∈ [0, 1] \ L(W ) and let the subalgebra be 

ACw of C
1
(W ) which consist functions that are absolutely continuous. 

 
 

 

Archbold [1] investigated whether the simple triangle inequality ∥T (a, A)∥ ≤ 

2t(a, Z) if applied holds. D(A) was defined to be a minimum value D in [0, ∞] 

so that t(a, Z) ≤ D∥T (a, A)∥. The behaviour of D in ideals and quotients were 

discussed which proved that Ds(A) ≤ 1 for a weakly central C∗-algebra A and 

considered a class of n-homogeneous C∗-algebras that are special. D and Ds 

was investigated and approximated finite-dimension (AF )C∗-algebra in that 

context and an example was given to show certain estimates. Shlomo [85] 

showed that for a certain Von-Neumann algebra U, a constant F existed such 

that dist(T, U) ≤ F supP ∈latU ∥P ⊥T P ∥ ∀ T ∈ 
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B(H). The work was extended to a Von-Neumann algebra U and showed that 

there exists a constant G ∈ B(H), dist(T, U) ≤ G∥∆T |U
′
∥ where δT is the 

derivation δT (S) = ST −T S thus proving that the inequality holds for large 

classes of Von-Neumann algebras. Fong [25] considered λ(M) defined as the 

smallest number ∥Z∥
2
 of Z that satisfy [Z∗, Z] = M and showed that 1 ≤ λ(M) 

≤ 2 and λ(M), M was suitably chosen if it is close to 2. 
 

 

Matej [47] estimated the distance of d1d2 to the generalized derivations and 

the normed algebra of M
′
 and considered the cases when M

′
 is an ultraprime, 

when d1 = d2 and M
′
 are ultrasemiprime and when a Von Neumann algebra 

is M
′
 from equation ∥M

′
+N

′
∥ = ∥M

′
∥+∥N

′
∥, M

′
, N

′
 ∈ B(H). Abramovich, 

Aliprantis, Burkinshaw [3] showed that the point spectrum of S lies on the 

norm ∥S∥; I is an identity operator on H only if the equation ∥I+S∥ = 1+∥S∥ is 

satisfied by operator S. Further, S, U ∈ B(H) satisfy ∥S + U∥ = ∥S∥ + ∥U∥ and 

zero which is the approximate point spectrum of the operator ∥S∥U − U∥S 

proved that for an isometric operator the converse is true for either S or U 

and a norm in B(H) don’t depend on the ideal on a norm of a derivation. 

Baxter [6] provided the supremum on ∥B
−1

∥2 when the points (yi)
n

1 form a 

subset of the integer L
d
, and a conditional definite negative function ϕ of 

order 1, which included the multi-quadric for functions set that are large. 

Further, a constructive proof was provided that a minimum bound is not 

valid and a relevant method to analyze the problem on estimation of 

eigenvalues such an interpolation matrix was commented on. 
 
 

 

The norm property coefficients was done by Cabrera, Rodriguez [15] for 

basic elementary operators ∥Xc,d∥ ≤ 2∥a∥∥b∥, for Jordan elementary op- 
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erator U = ∥Xc,d∥+ ∥Xc,d∥ and ∥Xc,d∥+ ∥Xc,d∥ ≤ 2∥c∥∥d∥ for the upper 
 

estimates. In fact, Gil [30] gave an estimate on matrix-valued function that is 

regular and showed that for normal matrices it is attainable then investigated 

their stability. Kittaneh [40] established the orthogonality, kernel and the 

range of a normal derivation with its association to opera-tors of norm ideals. 

Results relating to orthogonality of some derivation that are not normal were 

obtained. Stacho and Zalar [89] established the lower estimates for 

elementary operators of Jordan type in standard Banach algebras. 

 
 
 

Danko [20] established that for all unitarily invariant norms and for bounded 

Hilbert space operators there holds  ||C−D|
q
|  ≤ 2

q−1
 |C|C|

q−1
− D|D|

q−1
| , q 

≥ 2, if in addition, C and D are self-adjoint then ||||CX + XD|
q
||| ≤ 

2
q−1

||X||
q−1

||||A|
q−1

CX + XD|D|
q−1

|||, for all real q ≥ 3. 

C has a approximate point spectrum  ζap(A), has complex numbers 
 

ω hence there exist {xn}n ⊆ H which is a unit sequence such that limn ∥C − 

ω∥xn = 0. Since ζap(C) is contained in the the boundary of 
 

ζ(C). Gustafson, Rao [31], ∥A∥ ∈ ζ(A) if and only if ∥A∥ ∈ ζap(A) also   

ζ(A) ⊆ W (A) (spectral inclusion) and if ω(A) = ∥A∥, then γ(A) = ∥A∥.   

Therefore, the result implied that ∥A∥ ⊆ W (A) if and only if ∥A∥ ∈ ζ(A). 
 

In fact, Megginson [51] established that X ∈ K, then δB(X) ∈ J and ∥BX − 

XB∥K = ∥(B − λ)X − X(B − α)∥J ≤ 2∥B − α∥∥X∥K for α ∈ C. Therefore, 

∥δB(X)∥K ≤ 2d(B)∥X∥K, depicting ∥δB|K∥ ≤ 2d(B). Fur-ther, the notion of R-

universal operators was introduced and that R-universal is an operator A ∈ 

B(H) if ∥δB|K∥ = 2d(B) for every norm 

ideal K ∈ B(H). Landsman [45] proved that for a standard algebra oper- 
√  

ator on H ∥Ma,b∥ + ∥Ma,b∥ ≥ 2( 2 − 1)∥a∥∥b∥. Therefore, both the lower 
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norm and upper norm bounds have been established for normally repre-

sented elementary operators. Alexander [4] had an estimate on stochastic 

assumptions on transferring functions which are stable linearly and time-

invariant systems. The approach of nonparametric minimax was adopted to 

measure estimate accurately, an estimator of quality was measured over a 

transfer functions of family with the worst case error. The polyno-mial and 

exponential decaying impulse response sequences families were taken into 

consideration. The finite impulse response approximation for upper non-

asymptotic bounds on accuracy of the estimator of the least squares was 

established. It was established that the speed with which a true response with 

impulse is tending to null attained an estimate accu-rately was determined 

essentially. Estimation accuracy on lower bounds were presented and an 

adoptive estimator was developed which provided information about true 

systems that is not exploitative. 

 

Shinji [86] established that for a holomorphic functions f with 

 

Re{gf
′
(g)} > α and Re{gf

′′
(g)/f

′
(g)} > α − 1, (0 ≤ α < 1) re-spectively in 

{|g| < 1}, estimates of sup|g|<1(1 − |g|
2
)|f

′′
(g)/f

′
(g)| were given and functions 

Gelfer-convex of exponential order α, β was also con- 
 

sidered. Milos, Dragoljub [52] considered elementary operators x → ∑n 
 

j=1 vjxwj that acts on a Banach algebra, vj and wj denotes sepa-rate 

generalized scalar elements of commuting families. The ascent es-timation and 

lower bound estimation of an operator was given. Ad-ditionally, Fuglede-

Putnam theorem for elementary operator is a weak variant with vj and wj are 

strongly commuting families were given i.e vj = vj
′
 + ivj

′′
(wj = wj

′
 + wj

′′
), for all 

vj
′
 and vj

′′
 (wj and wj

′′
) commutes. 

 

Further, result concerning L
1
 estimate in Fourier transform of a class Ccpt

∞ 
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function in R
2n

 was obtained. 

 

Barraa and Boumazgour [7] characterized that the norm of bounded op-

erators more than one in a Hilbert space is the same summation of the norms 

which showed that δS,A,B is convexoid with the convex hull of its spectrum if 

and only if A and B are convexoid. Richard [78] established the CB-norms of 

elementary operators and the lower bounds for norms on B(H). The result 

was concerned with the operator UA,BX = AXB+BXA which showed that  

UA,B∥ ≥ ∥A∥∥B∥ which proved a conjecture of Math-ieu, other results and 

formula of  UA,B∥CB and  UA,B∥ were established. Richard [79] provided the 

estimation on the norm of elementary opera-tors that are completely bounded 

was a direct proof which was possible in B(H) through a generalized theorem 

by Stampfli [87] and it was shown that an operator J of length l equals to m-

norm and m = l. 
 

Seddik [81] proved that lower estimate bound ∥ 

T 

M,N∥ ≥ 2( 

√ M 

∥∥ 

N 

∥  2−1)∥    

holds, if it satisfies one of the conditions: (i). A standard operator alge-bra on 

B(H) is L and M, N ∈ L, (ii). L is ideally normed on B(H) and M, N ∈ B(H). 

Florin, Alexandra [26] estimated the norm of operator Hζ,λ = Uζ + Uζ
∗ + 

(λ/2)(Vζ + Vζ
∗) which is an element on a C∗-algebra Aζ = C∗(Uζ, Vζ unitaries 

: UζVζ = e
2πiζ

VζUζ). Further, proved for every 
 

λ ∈ C and ζ ∈ [
1

4 , 12 ] the inequality 

∥Hζ,λ∥ ≤ √ 
4+λ

2
−(1− 

1 
)(1 − 

 1+cos
2
 4πζ 

)min{4, λ
2 

}. This im- tan ζ,λ  2  

    √ √  
 1 

 
1 

 
       

proved the significance of the inequality ∥Hζ,2∥ ≤ 2 

 

2,ζ∈[ 

 

, 

  

], conjec-  4 2  
tured by Beguin, Valette and Zuk. Siva, Richard, Edwin [84] introduced  

a method to proof the estimate ∥ d2u
  ∥Cα  ≤ e∥t∥C

α
, and x solved the  

dxidxj  

equation δx−βx = t. The technic is applicable to Laplacian on R
∞

 and be 
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used to obtain similar estimate when the Laplacian is replaced by elliptic 

operators or infinite-dimensional operators. 

 

Gil [29] considered commuting matrices of matrix valued analytic func-tion 

and established a norm estimate, in particular, two matrices of matrix valued 

functions on a tensor product in a Euclidean space were explored. Stephen 

[90] communicated results on complex symmetric operator theory and 

showed that two non-trivial examples were of great use in studying 

Schr¨odinger operators. To compute the norm of a compact complex sym-

metrical operator, a formula was proposed and the observation was ap-

plicable to problems which are related to quantum mechanics. Estimate was 

given on the density matrix of a single-particle for Schr¨odinger oper-ators 

with spectral gaps and the exponential decay of the resolvent. New methods 

were provided to evaluate the resolvent norm for Schr¨odinger operators 

appearing on complex scale theory in resonance. 

 

Man-Duen, Chi-kwong [50] showed that triangle inequality served an up-per 

norm bound of an ultimate estimate for the sum operators that is sup{ T ∗RT 

+ V ∗SV ∥ : T and V } 
 

are unitaries = min ∥R + λI∥ + ∥S − λI∥ : λ ∈ C. The result discussed had 

relationship to normal dilations, spectral sets and the Von Neu-mann 

inequality. Yong, Toshiyuki [95] gave a norm estimate on pre-schwarzian 

derivatives of a specific type of convex functions by introduc-ing a maximal 

operator of independent interest of a given kind. The relationship between the 

convex functions and the Hardy spaces was discussed. Ola, Akataka, Derek 

[73] analyzed the structure of the set D = {y ∈ D(δ) : limn→∞ ∆n(y) = ∆(y)} 

for convergence of the gen- 
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erators that are pointwise where α is an approximate inner flow on a C∗-

algebra T with generator ∆ and ∆n be bounded generators of the approximate 

flows α
n
. In fact, the relationship of D and various cores related to spectral 

subspaces were examined. 

 

Seddik [82] showed that E is a normal operator which is invertible in B(H) 
 

if the estimate ∥E ⊗ E
−1

 + E
−1

 ⊗ E∥λ ≤ ∥E∥∥E
−1

∥ + 

1 

holds, ∥E∥∥E
−1

∥ 

such that ∥.∥λ is a one-to-one norm on the tensor-product B(H) ⊗ B(H), when 

E is invertible self-adjoint then the equation becomes an equal- 
 

ity. Further, the characteristics of E ∈ B(H) satisfied the relation 

∥E ⊗ E
−1

 + E
−1

 ⊗ E∥λ = ∥E∥∥E
−1 

∥ + 

1 

then gave characteri- ∥E∥∥E
−1

∥ 

zations by inequalities or equalities of normal-operators in B(H). Bonyo and 

Agure [10] characterized the norm ideal on norm of inner derivation to be 

equal to the quotient algebra and investigated them when the nor-mal and 

hyponormal operators are implementing them on norm ideals. Bonyo and 

Agure [11] investigated the relation between the inner deriva-tion 

implemented by Z on norm J and the numerical-range of an operator 
 

Z ∈ B(H) with its diameter and considered application of T -universality on 

the relation. 

 

Okelo, Okongo and Nyakiti [58] investigated the project tensor-product, VΓ
′ ⊗

ρ 

WΓ
′
 of these algebras. It was established that ∥∆S′ ∥ ≤ ∥∆

(1)
S′ + ∆

(2)
S′∥ ≤ 2∥∆S′ ∥ 

holds if λ = ∑i vi
′ ⊗wi

′
 belongs to AΓ ⊗ρ BΓ and ∆S′ on  

λ is a norm attainable α-derivation given by ∆S′ = ∆
(1)

S′ +∆
(2)

S′. Bonyo and 

Agure [9] gave the definition of inner-derivations implemented by A, B on 
 

B(H) as δA(Y ) = AY −Y A δB(Y ) = BY −Y B and generalized derivation by 

δA,B (Y ) = AY − Y B ∀ Y ∈ B(H). Further, a relation between the norms of 

δA, δB and δA,B on B(H) was specifically established when the 
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operators A, B are S-universal. 

 

Ber, Sukochev [8] showed that for every self-adjoint element b ∈ S(N) a 

scalar λ0 ∈ R exists such that ∀ ε > 0, then there exist a unital element uε 

from N satisfy |[b, uε]| ≥ (1 − ε)|b − λ01|. From this result a corollary is that 

for any derivation δ on N with the range on an ideal 
 

I ⊆ N the derivation δ is inner that is δ(.) = δe(.) = [e, .] and e ∈ 
 

I. Similarly the inner derivations on S(M) results were also obtained. Pablo, 

Jussi, Mikael [75] provided theoretic estimate of two functions for the 

essential-norm as a composition-operator Cθ that acts on the space BM OA 

(bounded mean oscillation for analytic functions); one in terms of the n-th 

power θ
n
 denoted by θ and the other involved the Nevanlinna counting 

function. Triet, Jianfeng [91] introduced a new type of norm for 

semimartangles, the defined norm of quasimartangales and then 

characterized the square integrable semimartangales. Therefore, the zero-

sum stochastic differential games study was done and the value of the 

process was conjectured as semimartangale with probable class measures 

under some conditions. 

 

Kingangi, Agure and Nyamwala [43] attempted the result on lower bound of 

the norms for finite dimensional operators. Odero, Agure, Rao [57] de-

termined the norm of symmetric operator in an algebra which is two-sided. 

More precisely, investigated the injection of tensor norm through the lower 

bound of the operator. In addition, the irreducible C∗-algebra on the inner 

derivation norm was determined and Stampfli [87] confirmed the result for 

these algebras. Kinyanjui [41] estimated the norm-attainability for 

elementary-operators on inner derivation, generalized derivation, ba-sic 

elementary operator and Jordan-elementary operator under norms. 
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Wafula, Okelo and Ongati [93] studied normally represented operator which 

is a special type of elementary operator and results showed that elementary 

equals its largest single value that is Ui(M) = ∥M∥ since 
S

A,B = A  hB + B hA is represented normally, then ∥SA,B∥Inj  ≥ 
√      A  B . ⊗ 

     

2(  2  

− 

1) ⊗ 
 

    ∥  ∥∥ ∥  
 

Elena, Lorenza, Ivan [24] studied properties of continuity of module spaces 

for operators of η-pseudo-differential Opη(c) in a Wiener amalgan space with 

a symbols c and obtained a bounded result for η ∈ (0, 1) where η = 0 and η = 1 

at end points and other operators were unbounded. In addition, it was 

exhibited the operator norm for the function η ∈ (0, 1) has an upper bound 

which is independent on parameter η ∈ (0, 1) was found. Jian-Feng, David 

[34] obtained R
1
, R

2
 and R

∞
 norm of the operator K∗

0 and R
p
(D) → R

∞
(D) 

norm of the operator C and J0 provided p > 2. Since approximations of fixed 

in different space and classes have been done therefore, Okelo [70] discussed 

the approximate non-expansive operators on fixed points in Hilbert spaces. 

Particulary, it was proved that in an invariant subspace H0 on a complex-

Hilbert space H has a non-expansive retraction that is unique R of H0 onto 

Γ(Q) and y ∈ H0 exists and a sequence {ξn} generated by {ξn = ϵnf(ξn) + (1 − 

ϵn)Tξn ξn for all n ∈ N is strongly convergent to T y. 
 
 

 

Cristina, Camil [19] proved the multilinear operators in R
d
 under vector-

valued and mixed-norm estimates in multiple, precisely, the multilinear 

variables of the Hardy-Little wood, maximal function and the operators Tk 

associated with a single space along dimension k. It was shown that the input 

functions are not necessary in L
p
(R

d
) when the dimension d ≥ 2 

but can be elements of mixed-norm spaces L
p

1 ...L
p

d . The purpose for this 
x

1 
x

d 
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study is to establish norm-attainability conditions for derivations, to de-

termine upper and lower norm-estimates for norm attainable derivations in 

Banach-algebras. 
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1.2 Basic concepts 
 

 

In this section, the definitions that are basic and results on Hilbert space, 

field, vector space, norm, Banach space, numerical radius, numerical range, 

inner product, commutator and derivations are reviewed. 

 

Definition 1.1 (93, Def. 1.1). A field K is a binary set operations that are 

additive and multiplicative that satisfy the axioms below: 

 

(i). Are closed under additive and multiplicative: w
′
+v

′
 ∈ K and w

′
.v
′
 ∈ 

 

K ∀ w
′
, v

′
 ∈ K. 

 

(ii). Law of association : w
′
 + (x

′
 + y

′
) = (w

′
 + x

′
) + y

′
  ∀ w

′
, x

′
, y

′
 ∈ K. 

 

(iii). Commutativity: w
′
+v

′
 = v

′
+w

′
 and (w

′
.v
′
).y

′
 = (v

′
.y
′
).w

′
∀w

′
, v

′
, y

′
 ∈ 

 

K. 

 

(iv). Additive and multiplicative identities: ∀ w
′
 ∈ K ∃ − w

′
 ∈ K : 

 

w
′
 + −w

′
 = 0. And w

′−1
 ∈ K : w

′
.v
′−1

 = 1. 

 

(v). Distribution: w
′
(v
′
 + y

′
) = (w

′
v
′
 + w

′
y
′
) ∀ w

′
, v

′
, y

′
 ∈ K. 

 

(vi). Additive inverse: ∀ w
′
 ∈ K ∃ z

′
 ∈ K : w

′
 + z

′
 = 0 and z

′
 + w

′
 = 0 then w

′
 

= −z
′
 ∀ z

′
, w

′
 ∈ K. 

 

(vii). Multiplicative inverse: For each d
′
 ∈ K the equation t

′
.d
′
 = 1 and d

′
.t
′
 = 

1, t ∈ K is the multiplicative inverse written as d
′−1

. 
 

Definition 1.2 (76, Def. 1.2). Let G
′
 be a vector space over a field F is a set 

which is non-empty with vector additive and multiplicative operations that 

are: 
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(i). Commutativity c
′
 + f

′
 = f

′
 + c

′
, ∀ c

′
, f
′
 ∈ G

′
. 

 

(ii). Associativity c
′
 + (f

′
 + e

′
) = (c

′
 + f

′
) + e

′
 ∀ c

′
, f
′
, e

′
 ∈ G

′
. 

 

(iii). Additive inverse ∀ c
′
 ∈ G

′
, ∃ − c

′
 ∈ G

′
 : c

′
 + −c

′
 = 0. 

 

(iv). Additive identity ∀ c
′
 ∈ G

′
, ∃ 0 ∈ G

′
 : c

′
 + 0 = c

′
 ∀ c

′
 ∈ G

′
. 

 

(v). Multiplicative identity 1.c
′
 = c

′
 ∀ c

′
 ∈ G

′
. 

 

(vi). Distributive property ∀ p
′
 ∈ F and ∀ c

′
, f
′
 ∈ G

′
, p

′
(c
′
 + f

′
) = (p

′
c
′
 + p

′
f
′
). 

 
 

 

(vii). Law of Unitary ∀ c
′
 ∈ G

′
, 1.c

′
 = c

′
. 

 

Definition 1.3 (63, Def. 2.1). A norm X
′
 is a non-negative function ∥.∥ : X

′
 → 

R
+
 ∪ (O) sufficing the axioms below: 

 

(i). ∥c
′
∥ ≥ 0 ∀ c

′
 ∈ X

′
. 

 

(ii). ∥c
′
∥ = 0 only if c

′
 = 0 ∀ c

′
 ∈ X

′
. 

 

(iii). ∥αc
′
∥ = |α| c

′
∥; ∀ c

′
 ∈ X

′
 and α ∈ C . 

 

(iv). ∥c
′
 + v

′
∥ ≤ ∥c

′
∥ + ∥v

′
∥; ∀ c

′
, v

′
 ∈ X

′
. 

 

 

The ordered pair (X
′
, ∥.∥) is normed space. 

 

Definition 1.4 (41, Def. 1.4). Banach space is a complete normed space. 

 

Definition 1.5 (44, Def. 3.1-1). A map ., . : E x E → K is an inner product 

such that ∀ s
′
, t
′
, u

′
 ∈ E, β, α ∈ K if it satisfy: 

 

(i) s
′
, s

′
  ≥ 0 and  s

′
, s

′
  = 0, only if s

′
 = 0. 
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(ii). βs
′
 + αt

′
, u

′
  = β s

′
, u

′
  + α t

′
, u

′
 . 

 
 

(iii). s
′
, t
′
  = t

′
, s

′
 . 

 

 

A pair (E, ., . ) is a space called inner product. 
 
 

Definition 1.6 (74, Def. 2.2). A Hilbert-space is a space with complete inner 

product. 

 

Definition 1.7 (61, Definition 2.1). Let T ∈ B(H), then, 
 

 

(i). Numerical-range by W ′(T ) = { T e, e : e ∈ H, ∥ e ∥= 1}. 

 

(ii). Numerical-radius by ω
′
(T ) = sup{|s| : s ∈ W ′(T )}. 

 

Definition 1.8 (64, Def. 1.6). The spectrum P given by ζ(P ) = {P − λI : λ ∈ 

C} is not invertible. 

 

Definition 1.9 (42, Def.1.13). An operator that is commuting with the adjoint 

is normal. 

 

Example 1.10 (42). Example 1.14] Let A : Y −→ Y and A = 2iI, I is an 

identity and A is normal then AA∗ = A∗A = I. 
 
 
 

 

AA∗ = (2iI)(2iI)∗ 
 

= (2iI)(−2iI) 
 

= −4i
2
I 

 
= 4I 
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A∗A 
 
 
 
 
 
 
 
 
 

 

It follows that AA∗ = A∗A. 

 
 
 
 
 
 
 
 

 

= (2iI)∗(2iI) 
 
= (−2iI)(2iI) 
 

= −4i
2
I 

 
= 4I 

 

Definition 1.11 (76, Def. 1.1). Linear operators are mappings T ′ : X′
 → 

 

Y ′ for: 
 

 

(i). M
′
(c
′
 + f

′
) = M

′
(c
′
) + M

′
(f
′
) ∀ c

′
, f
′
 ∈ Y ′. 

 

(ii). M
′
(αf

′
) = αM

′
(f
′
) ∀ f

′
 ∈ Y ′ and complex numbers α. 

 

(iii). K > 0 is constant such that ∥ M
′
f
′
  ≤ K ∥ f

′
 ∥ ∀ f

′
 ∈ Y ′ then M

′
 is 

bounded. 

 

Definition 1.12 (66, Def. 2.4). An operator is self-adjoint if S = S∗. 

 

Definition 1.13 (67, Def. 3.1). For an operator K there exist a unit vector t ∈ 

H such that ∥Kt∥ = ∥K∥ is norm-attainable. 

 

Definition 1.14 (59, Def. 1.1). A Banach algebra is a normed algebra if it is 

complete. 

 

Definition 1.15 (1, Def. 1.5). Banach ∗-algebra R
′
 is a C∗-algebra if ∥r

′
r
′∗∥ = 

∥r
′
∥

2
 ∀ r

′
 ∈ R

′
. 
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Definition 1.16 (65, Definition 2.1). Elementary operator T : B
′
(H) → B

′
(H) 

is defined by TDi,Ei (Y ) = ∑n
i=1 Di Y Ei ∀Y ∈ B

′
(H) and ∀ Di, Ei fixed in 

B
′
(H) where i = 1, ..., n. 

 

(i). Left-multiplication operatorLD : B
′
(H) → B

′
(H), LD(Y ) = DY, ∀ Y ∈ B

′
(H). 

 
 
 

(ii). Right-multiplication operator RE : B
′
(H) → B

′
(H), RE(Y ) = Y E, ∀ Y ∈ 

B
′
(H). 

 

(iii). Generalized-derivation, δD,E = LD − RE. 

 

(iv). Inner derivation (implemented by D), δD(Y ) = DY − Y D. 

 

(v). Basic elementary operator (implemented by D, E), MD,E(Y ) = DY E, ∀ 

Y ∈ B
′
(H). 

 

(vi). Jordan-elementary operator, UD,E(Y ) = DY E + EY D, ∀ Y ∈ B
′
(H). 

 
 

 

Definition 1.17 (62, Def. 1.11). An operator Q a projection if Q
2
 = Q. 

 

Definition 1.18 (87, Def.). A derivation is a mapping P ′ : U′
 → U

′
 which 

satisfy P ′(c′d′) = c
′
P ′(d′) + P ′(c′)d′ for all c

′
, d

′
 ∈ U

′
. 

 

Definition 1.19 (69, Def. 1.2). An operator S is a maximal numerical range 

defined as W0(S) = {β : St, t → β, where ∥t∥ = 1 and ∥St∥ → ∥S }. 
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1.3 Statement of the problem 
 

 

Since H is a Hilbert space whose dimension are infinite with the algebra of 

linear operators on H being B
′
(H), then algebras of norm-attainable operator 

on H is N A(H). Norm-attainable conditions for elementary operator has been 

done and results obtained. But, norm-attainable con-ditions for derivatives in 

Banach algebras and norm-estimates which is upper and lower norm 

estimates for derivations in Banach algebras has not been investigated. 

Objectively, the study will: establish norm attain-ability conditions for 

derivations in Banach algebras and determine the upper and the lower norm 

estimates for norm-estimates for norm attain-able derivations in Banach 

algebras. In this study therefore, we seek to determine the norms of 

derivations as an example of elementary operator when implemented by 

norm-attainable operator. 

 
 

 

1.4 Objectives of the study 
 

 

Are to: 
 

 

(i). Establish norm attainability conditions for derivations in Banach 

algebras. 

 

(ii). Determine the upper and the lower norm-estimates for norm attain-able 

derivations in Banach algebras. 
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1.5 Significance of the study 
 

 

Norm-attainability has been investigated by many mathematicians for a long 

time from the related literature. The result obtained from this study will be 

helpful in comprehending the patterns of electrons movement in orbits and 

approximating the distances moved in quantum mechanics. The result will 

also be useful in solving integral equations to obtain results for bounded 

domain for instance f
′
(x
′
) = ∫

a
b
 x
′
(t
′
)dt

′
 if f

′
 is bounded and has norm ∥f

′
∥ = b 

− a, t
′
 ∈ J = [a, b] then |f

′
(x
′
)| = | ∫

a
b
 x
′
(t
′
)dt

′
| 5 (b − a)maxt′∈J |x

′
(t
′
)| = (b − 

a)∥x
′
∥. 
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Chapter 2 
 
 

 

LITERATURE REVIEW 
 
 
 
 
 
 

2.1 Introduction 
 

 

In this chapter, we review related literature on norm-attainability and norm-

estimates for norm attainable derivations in Banach algebras. 

 
 

 

2.2 Norm-attainability 
 

 

Stampfli [87] determined the inner derivation δT0 : A0 → T0A0 − A0T0 which 

acts on Banach algebra B(H) on Hilbert space H. Further, ∥ δT0 ∥= inf 2 ∥ T0 

− λI0 ∥ for every complex λ was shown. For a normal T , then ∥δT0 ∥ can be 

expressed as the geometry of the spectrum of T0. 
 

Lemma 2.1. [87 Lem. 1] If ∥T0∥ = ∥x∥ = 1 and ∥T0x∥
2
 = (1 − ε), then ∥(T0

∗T0 

− 1)x∥
2
 5 2ε. 

 

In lemma 2.1 the lower and upper norm estimate on a norm of a derivation 
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are determined. In this study we have determined lower and upper norm-

estimates for norm attainable derivations in Banach algebras. 

 

Theorem 2.2. [87 Thm. 1] ∥δT0 ∥ = 2∥T0∥ if and only if 0 ∈ W0(T0). 
 

 

Theorem 2.2 establishes the norm of inner derivation on a maximal nu-

merical range of operator T0. In this study we have determined the norm 

estimate for norm-attainable derivations in Banach algebras. 

 

Johnson [37] established method which apply to a uniform convex spaces 

with a large class, that is the formula ∥δT ∥ is false in l
p
 and L

p
(0, 1) 1 < p < 

∞, p =  2. 

 

Proposition 2.3. [37, Prop. 2] Let U be a normed space on K then u, v ∈ U 

have the following properties. 

 

(i). ∥u∥ = 1 and there exists g ∈ U∗ with ∥g∥ = 1 such that {un} is a sequence 

with ∥un∥ 5 1, g(un) → 1 then un → u. 
 

(ii). ∥t∥ = 1 and the unit ball U1 is uniformly convex at t. 

 

(iii). For every λ ∈ K, ∥u + λv∥ < 1. 

 

(iv). ∀ λ ∈ K, ∥v + λu∥ = 1. 
 

 

Proposition 2.3 determines the norm estimate in a uniform convex space. In 

this study we have established the norm estimate for norm-attainable 

derivations in Banach algebras. 

 

Proposition 2.4. [37, Prop. 3] Let F ′ be a uniform convex Banach-space f
′
, s 

∈ F ′ j, k ∈ F ′∗ with ∥f
′
∥ = ∥s∥ = ∥g∥ = ∥k∥ = g(f

′
) = 
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k(f
′
) = 1, k(f

′
) = 0, g(s) = 0 and suppose g is the only element h of F ′∗ 

      
with 

∥ 
h 

∥ 
= h(f

′
) = 1. Then conditions in proposition 2 are satisfied by 

    

f
′
, s, g . 

 

Proposition 2.4 considers the norm on a convex Banach space but we have 

obtained norm-estimates for norm attainable derivatives in Banach-algebras. 

 

 

Johnson [36] found that a derivation in B(H) is a map δ : B(H) → B(H) with 

δ(P S) = P δ(S) + δ(P )S P, S ∈ B(H). Such derivations are necessarily 

continuous and if S ∈ B(H) then δS(P ) = P S − SP is a derivation in B(H). 
 

 

Theorem 2.5. [36, Thm. 1] If a derivation ∆ is in B(H) then ∆ = ∆S for some 

S ∈ B(H). 

 

Theorem 2.5 found the norm of a derivation but we have established the 

lower and upper norm-estimates for norm attainable derivations in Banach 

algebras. 

 

Theorem 2.6. [36, Theorem 2] (Stampfli [87]) ∥δS∥ = 2dist(S, CI). 

 

Theorem 2.6 determines the inner derivation which is equivalent to 2dist(S, CI 

but we have established the lower and upper norm-estimates for norm at-tainable 

derivations in Banach algebras. 

 

In Gajendragadka [27] was concerned with computation of norm of deriva-

tion and the Von-Neumann algebra. Specifically when the Von-Neumann 

algebra act on separable Hilbert space H, T ∈ U was proved that then δT is 

the derivative induced by T, then ∥δT |U∥ = 2 inf ∥T − Z∥, Z in the centre U. 
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Lemma 2.7. [27 Lem. 1] If U is Von-Neumann algebra which act on Hilbert 

space H and if T is in U, then there exist Z0 in Z(U) such that, for every 

projection P in Z(U), ∥(T −Z0)P ∥ = inf ∥(T − Z)P ∥, Z ∈ Z(U). 

 

Lemma 2.7 determines the on norm of a Von-Neumann algebra but we es-

tablished lower and upper norm-estimates for norm attainable derivations in 

Banach algebras. 

 

Theorem 2.8. [27, Thm. 1] Let U be a Von-Neumann algebra on H and 

assume that U
′
 is abelian. Then for T in U, there exist Z0 in Z(U) = U

′
 such 

that ∥δT |U∥ = 2∥T − Z0∥. 

 

Theorem 2.8 found the norm of inner derivation but we have determined the 

norm of generalized derivation for norm-attainable derivations in Ba-nach 

algebras. 

 

Kyle [38] examined the numerical-range of inner derivation and the ele-ment 

implementing it and the relationship between them. 

 

Lemma 2.9. [38, Lem. 2.1] For any Banach-algebra C, D(B, C) = D(LB; 

MC) = D(RB; M(C)) where LB(X) = BX and RB(X) = BX. 

 

Lemma 2.9 established the numerical range in a complex unital Banach 

algebra but we have considered derivations in norm-attainable derivations. 

 

Theorem 2.10. [38, Thm.  2.3] Let A = LX , for some Banach-space 
 

X , let δA,B(X) = AX + XB. Then Q(δA,B; L(LX ))) = Q(A; LX )) + 
 

Q(B; LX )). 
 

 

Lemma 2.10 established the generalized derivation but we considered in-ner 

derivation in norm-attainable operators. 
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Kyle [39] studied on norms of inner derivations and used their properties and 

concluded that a C∗ algebra is a closed subset of all derivations which forms 

the inner derivations set and obtained the result which was a converse by 

Stampfli [87]. 
 
 

Proposition 2.11. [39, Prop. 2.2] If x, l, y, k and A(l) = k(l)x, then ∥A∥ = inf{ 

A + λI∥ : λ ∈ C} = 1. 
 
 

Proposition 2.11 investigates the norm of elementary operator but we con-

sidered norm attainability conditions for derivations in Banach-algebras. 

 

Corollary 2.12. [39, Cor. 2.1] Let ∥δA∥ = 2inf{ A + λI∥ : λ ∈ C} for all A in 

L(X) then ∥δA∥ = 2. 
 
 

In corollary 2.12 the norm of inner derivation was found but we have inves-

tigated the norm of generalized derivation for norm-attainable derivations in 

Banach algebras. 

 

Charles and Steve [16] answered the question when X = T by structure 

characterization of compact derivations of C∗-algebras. Moreover, the 

structure of weak compact derivations of C∗-algebras was determined and as 

immediate corollaries of these results, conditions that were necessary and 

sufficient were obtained so that C∗-algebras admits non-zero compact or 

weakly compact derivation. 
 
 

Lemma 2.13. [16, Lem. 2.1] Let an infinite dimensional Hilbert-space be H, 

the algebra of all bounded linear operators on H be B(H). If δ is a compact 

derivations of B(H) then δ ≡ 0. 
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Lemma 2.13 gives the condition for B(H) to be a compact derivation, 
 

δ ≡ 0 but we have given norm attainability conditions for norm-attainable 

derivatives in Banach-algebras. 

 

Erik [23] established that any C∗ algebra F on a Hilbert-space H with cyclic 

vector with property that to derivation δ of F into B(H) an oper-ator y existed 

in B(H) : ∀ f ∈ F, δ(f) = [y, f] = yf − f y. 
 

Theorem 2.14. [23, Thm. 4.1] Let B be a C∗ algebra, T a C∗ subal-gebra and 

a derivation δ of T into B. For any finite set t1, ..., tn in T,  

∥ ∑n
i=1 δ(ti)

∗δ(ti)∥ ≤ 14∥δ∥
2
∥ ∑n

i=1 t∗iti∥. 

 

Theorem 2.14 determined the upper estimate for inner derivations but we 

have given norm attainability conditions for derivatives in Banach-algebras. 

 

 

Corollary 2.15. [23, Cor. 5.4] Let a C∗-algebra on a Hilbert-space H be 
 

T. Suppose T has a cyclic vector, then: 
 

 

a) For every operator y in B(H), d(y, T ′) 5 12∥ad(y)|T ∥. 

 

b) Any derivation δ of T into B(H) implemented by an operator y is such 

that ∥y∥ 5 12∥δ∥. 

 

Corollary 2.15 established upper estimate for C∗ algebra derivations but we 

considered inner and generalized derivations. 

 

Mathieu [48] proved that for bounded derivations that are non-zero then the 

product of two prime C∗-algebras are bounded. 
 

Theorem 2.16. [48, Thm. 1] Let δ be a derivation which is densely defined on 

a C∗ algebra B. If δ
2
 is bounded, then δ is also bounded. 
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Theorem 2.16 investigated derivation of a C∗-algebra but we have consid-

ered inner and generalized derivations in Banach algebras. 

 

Lemma 2.17. [48, Lem. 1] Let Y be a prime C∗ algebra. For all c, d, e ∈ Y , 

let Mc,d,e :YXY→ Y is the bilinear mapping (z, w) 7→czdwe. Then ∥Mc,d,e∥ = 

∥c∥∥d∥∥e∥. 

 

Lemma 2.17 discussed the basic elementary operator and its norm but we 

have established norms of inner and generalized derivations in Banach 

algebras. 

 

Volker [92] two automatic continuity problems for derivations on commu-

tating Banach algebras were discussed : (a) Derivation on a commutative 

algebra is mapped onto the radical, and: (b) Banach algebras are contin-uous 

on semiprime derivations. It was proved that (b) implies (a). Fur-thermore, 

(b) proved that for special cases Banach algebras are reduced to a small class 

and also similar results were given on epimorphisms. In fact, it was shown 

that semisimple Banach algebras were characterized with no topologically 

nilpotent element other than zero being among the commutative Banach 

algebras; known examples of discontinuous deriva-tions on commutating 

Banach algebras depended majorly on the existing nontrivial nilpotent 

elements which was on a generalized derivation of semiprime Banach 

algebra and that nilpotent elements are continuous on a commutative Banach 

algebra without nontrivial. 

 

Theorem 2.18. [92, Thm. 6] The following four statements are equiva-lent. 

 
 
 
 

(i). The derivation on a nilpotent separating space has a commutative 

Banach algebra. 
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(ii). The derivation is continuous on a semiprime Banach algebra. 

 

(iii). The derivation which is an integral domain is continuous on a Ba-nach 

algebra. 

 

(iv). The derivation is continuous on a topological simple, commutative 

Banach algebra other than C. 

 

Theorem 2.18 gave equivalent statements on derivations on a Banach algebra 

but we have given conditions for norm-attainability for derivations on 

Banach algebras. 

 

Douglas [21] continued the study of Ws(Y ) which was considerably more 

amenable where Archbold [1] defined the smallest numbers to be [0, ∞] and 

introduced two constants W (Y ) and Wx(Y ) such that d(y, Q(Y )) ≤ W (Y 

)∥D(y, Y )∥ ∀ y ∈ Y and d(y, Q(Y )) ≤ Ws(Y )∥D(y, Y )∥ ∀ y = y∗ ∈ Y. 
 
 
 

Lemma 2.19. [21, Lem.  4.1] Let M be a C∗-algebra and let m ∈ M. 
 

Then ∥D(m, M)∥ = sup{ D(mp, T /M)∥ : P ∈ prime(M)}. 
 
 

Lemma 2.19 discussed the upper norm estimate for distance but we con-

sidered norm of derivations in Banach algebras. 

 

Corollary 2.20. [21, Cor. 4.3] Let X be a C∗ algebra with an identity and x ∈ 

Xsa. Then ∥D(x, X)∥ = sup{ µ(xp) − β(xp)∥ : P ∈ prime(X)}. 

 

Corollary 2.20 discussed the norms of elementary operators but we con-

sidered norm estimates for derivations in Banach algebras. 

 

Dutta, Nath, Kalita [22] showed that if α1 and α2 are δ-derivation and δ
′
- 

∑ ⊗ 

derivation on (T, γ) and (T ′, γ′) and an arbitrary element n = 1 y1 x1 
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of (T, γ) ρ(T 
′
, γ
′
), then a derivation D on δ  δ

′
 exists in (T, γ) ρ(T

′
, γ
′
) 

satisfy 
α n 

1[( 
α y 

1

) x 
1 + y 

1 ( 
α x    in which many enlightening 

 ⊗()= 1      2  1)]⊗   ⊗  
   possessed. Furthermore, the validity o f the results  was  

properties were
∑ 

    ⊗      ⊗             

investigated on ∥α∥ = ∥α1∥ + ∥α2∥ and sp(α) = sp(α1) + sp(α1).  

Theorem 2.21. [22, Thm.  2.1] Let α1  and α2  be δ-derivation and δ
′
- 

derivation on (P, Γ) and (P ′, Γ′
) respectively. Then     

(i). There exists a bounded δ δ
′
-derivation α on (P, Γ) ρ(P 

′
, Γ

′
) de- 

fined by α n ) =  1[( α y   x 1 + y 1 α x 1)] , for each vector 
(    ⊗

11)     
(
 2 ⊗   

n = 
∑

1 y1 ⊗x1ε( 
∑

Γ) ⊗ρ( 
⊗

′Γ′) 

. 
    ⊗     

        P,    P ,            

 

(ii). If D1  and α2  are δ− and δ
′
-inner derivation implemented by the 

elements r0εP and s0 εP ′ respectively then α is an δ ⊗δ
′
-inner 

derivation implemented by r0 ⊗ 1α + 1α ⊗s0.  
(iii). If α1 and α2 are δ  and δ

′
-Jordan derivations, then δ δ

′
-Jordan 

derivation. −    ⊗ 

(iv). If (P, Γ) and (P ′, Γ′
) are involutive Gamma-Banach algebras, and if α1 

and α2 are δ− and δ
′
-star derivations, then α ⊗α

′
-star deriva-tion. 

 
 

 

Theorem 2.21 established the conditions for inner, Jordan, star deriva-tions 

but we considered generalized derivations in Banach algebras. 

 

Theorem 2.22. [22, Thm. 2.2] The following results are true : 
 

 

(i). If α is a derivation on (T, Γ)  rho(T 
′
, Γ

′
) such that α(  1 y1 x1) = 

∑ 1  ⊗ 1  1  1  ⊗  
′
-idempotent ∑ ⊗′ 

  

z 
1 

, z εT 
′   

   x  and x s are δ  elements of P , then 
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there exist an δ
′
-derivation α1 on T defined by α1y 

⊗ 

x = α(y   x) 

for all yεT for every δ
′
-idempotent element xεP ′; ⊗ 

(ii). If α is bounded then α1;  

(iii). If α is an δ ⊗δ
′
-inner derivation implemented by an element m of 
∑ ⊗ 

the form m = 1 y1 x1, where x1’s are δ
′
-idempotent elements, 

∑ 
then α1 is an δ-inner derivation implemented by 1 y1; 

 

(iv). If (T, Γ) and (T ′, Γ′
) are involutive Gamma-Banach algebras, α α1 are 

star derivations. 
 

(v). If α is an δ ⊗δ
′
-Jordan derivation then D1 is a δ-Jordan derivation; 

(vi). If α is an δ 
⊗δ′

-derivation on (T, Γ) ⊗ρ(T ′, Γ′) such that  
∑ 1 ⊗′ ∑ ⊗ ′ 2 ′   ′  

α( 1 
y

1  x1) = 1 
y

1 s1, for δ idempotent elements y1 in T , 
and s εT  then there exists an δ -derivation α  on (T , Γ ) given by 

  ⊗  

y α2 = α(y x) for every δ-idempotent element yεT and for all 

elements xεT ′. The above results (ii), (iii), (iv) and (v) are true for 

α2. 
 

 

Theorem 2.22 established the conditions for inner, derivations but we have 

considered generalized derivations in Banach algebras. 

 

Rajendra, Kalyan [77] showed that for the nth order commutator 

 

[[[k(B), Y ], Y ], ..., Y ] a formula was obtained in terms of the Frechet 

derivatives S
m

k(B) in which the formula illustrated was used to obtain 

bounds for norms of a generalized commutator k(B)Y − Y k(B) and their 

higher order analogues. 
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Theorem 2.23. [77, Thm. 2.1] Let k be a holomorphic function on a complex 

domain Ω and let B be an operator contained in spectrum of Ω. Then k(B)Y 

− Y k(B) = δB(A)(BY − Y B) holds for all Y. 

 

Theorem 2.23 discussed the use of the formula to obtain the derivative of the 

inner commutators but we have established the norms of inner derivations in 

Banach algebras. 

 

Theorem 2.24. [77, Thm. 2.2] Let k be a continuously differentiable function 

on an open interval I. Then k(S)Y −Y k(S) = δk(S)(SY −Y S) holds for all self-

adjoint operators S with their spectra in I, and for all skew-Hermitian 

operators Y. 

 
 

Theorem 2.24 discussed the derivative of inner commutators of self-adjoint 

operators and skew-Hermitian operators. In this study we have discussed 

inner and generalized derivations in norm-attainable operators. 
 

Hong-Ke, Yue-qing [33] proved that sup{  ∑n
i=1 RiY Si∥ : Y ∈ B(H), ∥Y ∥ ≤ 1} 

= sup{  ∑n
i=1 RiT Si∥ : U U∗ = T ∗U = I, U ∈ B(H)}. Therefore, there exists an 

operator Yk which proved that ∥Yk∥ = 1 so that ∥ ∑n
i=1 RiYkSi∥ = sup{  ∑n

i=1 

RiY Si∥ : Y ∈ B(H), ∥Y ∥ ≤ 1} if and only if there exists a unitary U0 ∈ B(H) so 

that ∥ ∑n
i=1 RiU0Si∥ = sup{  ∑n

i=1 RiY Si∥ : Y ∈ B(H), ∥Y ∥ ≤ 1}. 

 

Corollary 2.25. [33, Cor. 2.2] If the elementary-operator δ ˜ ˜  is norm 
P ,Q 

attainable, then there exists an isometry or co-isometry V0 such that 

∥δP˜ ,Q˜∥ = ∥ ∑i
n

=1 PiV0Qi∥.  
Corollary 2.25 gave norm-attainability conditions for generalized deriva- 
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tions but we have considered norm-attainability conditions for inner deriva-

tions. 

 

Lemma 2.26. [33, Lem. 2.5] For an operator P ∈ B(H) then P is norm 

attainable if and only if its adjoint P ∗ is norm attainable. 

 

Lemma 2.26 discussed the conditions for norm-attainable operators but we 

have considered conditions of norm-attainable derivations in Banach 

algebras. 

 

Okelo, Agure and Ambogo [61] established the norm of Jordan-elementary 

operator UM ,N : B(H) → B(H) given as UM ,N = M Y N + N Y M, ∀ Y ∈ B(H) 

and M, N fixed in B(H) and showed that  UM ,N ∥ ≥ ∥M∥∥N∥ and then 

characterized the norm-attainable operators using this norm. 

 

Theorem 2.27. [61, Thm. 3.4] An operator C ∈ B(H), C is norm attainable if 

and only if its adjoint is norm attainable. 
 

 

Theorem 2.27 determines the conditions of norm-attainable elementary 

operators but we have established the conditions of norm-attainability for 

derivations in Banach algebras. 

 

Theorem 2.28. [61, Thm. 5.1] Let TN,C,D : B(H) → B(H), Y → CY D + DY C, 

∀Y ∈ B(H) norm-attainable Jordan elementary oper-ator. Assume C, D ∈ 

B(H) are norm attainable such that C = γQ and D = γR where Q = |C|, R = 

|D| and γ a unitary in B(H) then  TN,C,D|B(H)∥ ≥ ∥C| D∥. 
 
 

 

Theorem 2.28 considers lower estimate for norm-attainable Jordan ele-

mentary operators but we considered lower and upper norm-estimates for 

norm attainable derivations in Banach-algebras. 
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Okelo [68] investigated that ideals of norm-attainable elements imple-

mented by inner derivations of a C∗-algebra has relation to primitive ideals. 

Since there is a relationship between the constants A(ξ) and Asξ ideals of C∗-

algebras and ideals that are primitive then related results were given. 
 
 

 

Lemma 2.29. [68, Lem. 3.1] Let ξ be a C∗-algebras, prim (ξ) the set of all 

primitive ideals in ξ, [A] the cannonical image of A in ξ/K, then δA
N

 , ∥δA
N

 ∥ 

= sin{ δ[A]|(ξ)/K∥ : K ∈ prim(ξ)} is a norm-attainable inner derivation 
 
 
 

 

Lemma 2.29 determined the norm of norm-attainable inner derivations but 

we have given norm-attainability conditions for inner derivations. 

 

Corollary 2.30. [68, Cor. 3.2] Let A ∈ ξ be norm attainable and con-sider the 

norm attainable inner derivation δA
N

 , induced by A. Then the following 

hold: 
 

 

(i). δA
N

 is self adjoint. 

 

(ii). A is normal. 

 

(iii). ∥δA
N

∗ |ξ∥ = 2d(A∗). 
 

 

Corollary 2.30 investigated norm-attainability conditions for inner deriva-

tions but we have considered generalized derivations. 

 

Okelo, Agure and Oleche [66] gave results on necessary and sufficient con-

ditions for norm-attainable operators also studied norm-attainable oper-ators 

and generalized derivations 
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Theorem 2.31. [66, Thm. 3.3] An operator B ∈ B(H) implemented by norm-

attainable inner derivation, δB
N

 is uniformly dense in B(H). 
 

 

Theorem 2.31 establishes norm-attainability condition for inner deriva-tion 

which is uniformly dense in B(H) but we have considered norm-attainability 

conditions generalized derivation in Banach algebras. 

 

Lemma 2.32. [66, Lem. 3.5] The set of operators B, C ∈ B(H) which are 

implemented by norm-attainable generalized derivation, δB,C
N

 are uni-

formly dense in B(H)XB(H). 
 

 

Lemma 2.32 establishes norm-attainability condition for generalized deriva-

tion which are uniformly dense in B(H) X B(H) but we have considered norm-

attainability conditions of inner derivation in Banach algebras. 

 

Okelo [65] extended the work by presenting new results on conditions that 

are sufficient and necessary for norm-attainable operators on Hilbert space, 

elementary operator and generalized derivation was established. Further, 

Okelo [65] established that a unit vector exists λ ∈ H, ∥λ∥ = 1 so that ∥Sλ∥ = 

∥S∥ with Sλ, λ = ε. 
 

Theorem 2.33. [65, Thm. 2.1] Let Z ∈ B(H), β ∈ W0(Z) and ϕ > 0. There ∃ 

an operator T ∈ B(H) such that ∥Z∥ = ∥T ∥, with ∥Z − T ∥ < ϕ. Furthermore, 

there exists a vector λ ∈ H, ∥λ∥ = 1 such that ∥T β∥ = ∥T ∥ with T λ, λ = β. 
 
 
 

 

Theorem 2.33 determines the norm of an operator in a maximal numerical 

range of Z but we established norm-attainable conditions for derivations in 

Banach algebras. 
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Lemma 2.34. [65, Lem. 3.1] Let S ∈ B(H). δS is norm attainable if there ∃ a 

vector γ ∈ H such that ∥γ∥ = 1, ∥Sγ∥ = ∥S∥, Sγ, γ = 0. 

 

In lemma 2.34 norm-attainability for inner derivations is established but we 

have considered norm-attainable operators for generalized derivations in 

Banach algebras. 

 

Okelo [62] studied norm-attainable operators that are convergent and 

established projective tensor norm via norm-attainable operators. 

 

Theorem 2.35. [62, Thm. 3.1] Let M ∈ B(H), α ∈ W0(M) and µ > 0. There 

exists an operator N ∈ B(H) such that ∥M∥ = ∥N∥, with ∥M − N∥ < µ. 

Furthermore, there exists a vector ζ ∈ H, ∥ζ∥ = 1 such that ∥N ζ∥ = ∥N∥ with 

Zζ, ζ = α. 

 

Theorem 2.35 investigates upper norm estimate of a maximal numerical 

range β ∈ W0(A) but we established lower and upper norm estimate for 

norm-attainable derivations in Banach algebras. 

 

Theorem 2.36. [62, Thm.  4.4] Let {Kn} and {Ln} be sequences of 
 

operators in N A(H) and N A(H
′
)respectively. If one converges to zero 

⊗  

uniformly and the other is bounded, then {Kn 
ˆ
 Ln} converges to zero 

uniformly. 
 

 

Theorem 2.36 shows that sequence of N A(H) converges uniformly to zero 

but we established norm-attainability conditions for derivations in Banach 

algebras. 

 

Sayed, Madjid, Hamid [80] proved that for a linear map ∆ : U → U, ∆(XY ) = 

∆(X)Y + ∆X(Y ) for each X, Y ∈ U is a derivation, then any 
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two derivations ∆ and ∆
′
 on a C∗-algebra U exists a derivation δ ∈ U such 

that ∆∆
′
 = δ

2
 if and only if either ∆

′
 = 0 or ∆ = f∆

′
 for any f ∈ C. 

 

Proposition 2.37. [80, Prop. 2.4] Let D be a subalgebra of M2C which is a 

generation of E11 and E12 and δ, δ
′
 be derivations on D. Then ∆∆

′
 = δ

2
 if and 

only if ∆
′
 = 0 or ∆

′
 = ∆α′E12 , α

′
 ∈ C implies that ∆ = ∆αE12 ,  

α ∈ C, or equivalently ∆
′
 = 0 or ∆

′2
 = 0 implies ∆

2
 = 0. 

 
 

Theorem 2.37 discussed the product of two derivations in a subalgebra 

matrix. This study we have established norm attainability conditions for 

derivations in Banach-algebras. 

 

Theorem 2.38. [80, Thm. 3.1] Let U be a C∗-algebra and ∆, ∆
′
 be derivations 

on U. Then there exists a derivation δ on U such that ∆∆
′
 = δ

2
 if and only if 

either ∆
′
 = 0 or ∆ = f∆

′
 for all f ∈ C. 

 

Theorem 2.38 discussed two derivations in a C∗-algebra and their product. 

This study we established norm-attainability conditions for derivations in 

Banach algebras. 

 

Clifford [18] studied hypercyclic generalized derivations acting on separa-ble 

ideals of operators then identified concrete examples and established some 

conditions that are necessary and sufficient for their hypercyclic-ity. 

Particular Banach algebras acted on by the dynamics of elementary operators 

were considered. 

 

Theorem 2.39. [18, Thm. 4.1] Let X and Y be hyponormal such that X, Y ∈ 

B(H). The generalized derivation ηX,Y : C2 → C2 is not super-cyclic. 
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Theorem 2.39 discussed supercyclicity of generalized derivation but we have 

investigated inner derivations on Banach algebras. 

 

Oyake, Okelo and Ongati [74] characterized inner derivations in Banach 

algebra and investigated inner derivation properties that are implemented by 

norm-attainable operators such as measurability, normality continu-ity, 

linearity, trace and spectra of inducing operator and determined the norms. 

The result showed that the derivations admitted tensor norms of operators. 

 

 

Theorem 2.40. [74, Thm. 3.2] Let V : H1 → H2 and W : K1 → K2 be 
 

bounded operators between Hilbert-spaces. Then a unique bounded opera- 
(  ) ⊗ (  ) ⊗    1 ⊗    1 ⊗   ⊗   

tor V  ˆ W:H1 
ˆ 
K1 → H2 

ˆ 
K2 exists such that (V 

ˆ
 W )(X Y ) = 

V  ⊗  
X 

 
H 

 
and 

 
Y 

 
K . Moreover, 

 ⊗  
= V X   W Y 

∀ ∈ 
 

∀ ∈ ∥ 
V ˆ W 

∥               

∥ ∥∥ 

W .                 

 ∥                 

 

Theorem 2.40 investigates the norm of bounded operators between Hilbert 

spaces but we have given norm attainability conditions for derivatives in 

Banach-algebras. 

 

Kinyanjui [42] characterized norm-attainable elementary operator and 

showed if operators M, N and δM ,N are norm attainable then δM ,N is 

normally represented. 

 

Lemma 2.41. [42, Lem. 2.7.] Let an infinite dimensional complex non-

separable Hilbert space be H and the algebra of all bounded linear 

operators on H be B
′
(H). Let δ

′
 : B

′
(H) → B

′
(H) defined as δP

′
 ′ (Y ′) = P ′Y ′ 

−Y ′P ′. Then δP
′
 ′ is norm attainable. 
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Lemma 2.41 establishes conditions of norm-attainability for inner deriva-

tions but we have established conditions of norm-attainability for a gen-

eralized derivations in Banach algebras. 

 

Lemma 2.42. [42, Lem. 2.10] Let an infinite dimensional complex non-

separable Hilbert space be H and the algebra of all bounded linear opera-

tors on H be B
′
(H). Let δ : B

′
(H) → B

′
(H) be defined as δP ′,Q′ (X

′
) = P ′X′

 − 

X
′
Q
′
. Then δP ′,Q′ is norm-attainable if P ′ and Q

′
 are norm-attainable. 

 
 

 

Lemma 2.42 establishes conditions of norm-attainability for generalized 

derivations but we have established conditions of norm-attainability for inner 

derivations in Banach algebras. 

 

In Okelo, Aminer [67] norm inequalities that are new of matrices of norm-

attainable operators were presented and the map which act on matrices of the 

operators were characterized. Okelo and Aminer [67] completely 

characterized norms that are bounded, gave norm-convergence in N A(H)-

classes via the extension of orthogonality. Norm inequalities that are new of 

matrices of norm-attainable operators were presented and the map which act 

on matrices of the operators were characterized. Okelo and Aminer [67] 

completely characterized norms that are bounded, gave norm-convergence in 

N A(H)-classes via the extension of orthogonality. 

 

Lemma 2.43. [67, Lem. 3.2] If PN , QN ∈ N A(H) are norm-attainable then 

PN + QN , PN − QN and λPN , λ ∈ C are norm-attainable. 

 

Lemma 2.43 shows that PN + QN , PN − QN and λPN , λ ∈ C are norm-

attainable. This study we have done norm estimates for norm-attainability 

derivations in Banach algebras. 
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Theorem 2.44. [67, Thm. 3.6] An operator B ∈ N A(H) which is nor-mal is 

norm attainable. 
 

 

Theorem 2.44 shows that B ∈ N A(H) is normal but we have considered 

conditions of norm-attainability for derivations in Banach algebras. 

 

Okelo [64] considered orthogonal and norm-attainable of operators in Ba-

nach spaces, gave in details the generalization of norm-attainability and 

orthogonality and characterization. The conditions that are sufficient and 

necessary for norm-attainable operators in a Hilbert space, result on ker-nel 

of elementary operators and the orthogonal range when implemented by 

norm-attainable operators in Banach spaces were given. 

 

Proposition 2.45. [64, Prop. 3.1] Let B, C, D ∈ Ω with DC = 1 (1 is an 

identity element of Ω). Then a generalized-derivation δA,B = BY −  

Y C and an elementary operator ΘB,C (Y ) = BY C − Y, RC (RanδB,D) ∩ 
  

KerδB,D = RanΘB,C ∩KerΘB,C . Therefore, if RanδB,D ∩KerδB,D = {0} 
  

then RanΘB,C = ∩KerΘB,C = {0}. 
 
 

 

Proposition 2.45 investigates the generalized derivation but we have es-

tablished the both inner and generalized derivation in Banach algebras. 

 

Theorem 2.46. [64, Thm. 3.10] Let the normal operators be 

 

B
′
, C

′
, D

′
, E

′
 ∈ B

′
(H) such that B

′
C
′
 = B

′
C
′
, C

′
E
′
 = E

′
C
′
, B

′
B
′∗ ≤ D

′
D
′∗, C

′∗C 

≤ E
′∗E

′
. For an elementary operator U

′
(X

′
) = B

′
X
′
C
′
 − D

′
X
′
E
′
 and T ′ ∈ B

′
(H) 

satisfying B
′
T ′C′

 = D
′
T ′E′

, ∥U
′
(X

′
) + T ′∥ ≥ ∥T ′∥ for all X

′
 ∈ B

′
(H). 
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Theorem 2.46 determines the lower norm estimate for normal operators but 

we investigated the upper norm-estimates for norm attainable deriva-tions in 

Banach algebras. 

 

Odero, Agure, Nyamwala [56] showed that the mapping ∆A′B′ : B(H) → B(H) 

is a generalized derivation of two bounded operators A
′
, B

′
 ∈ B(H) induced 

by A
′
 and B

′
 were defined by ∆A′,B′ (Y ) = A

′
Y − Y B

′
, therefore, the norm 

∥∆A′,B′ ∥ = ∥A
′
∥ + ∥B

′
∥ for all A

′
, B

′
 ∈ B(H) was given. 

 

Theorem 2.47. [56, Thm. 1] Let J, K ∈ B(H) and δJK : B(H) → B(H). Then 

∥δJ,K ∥ = ∥J∥ + ∥K∥ for all B(H). 

 

Theorem 2.47 determined the norm of generalized derivation operator but we 

have considered norm attainability conditions for derivations in Banach-

algebras. 

 

Theorem 2.48. [56, Thm. 2] Let the distance from A and B to the scalar 

multiple of the identity be δ(A) = inf{ A − λ∥ : λ ∈ C} and δ(B) = inf{ B − λ∥ : 

λ ∈ C}. Then ∥δAB/B(H)∥ = ∥A∥ + ∥B∥. 

 

Theorem 2.48 determined the distance from A and B on a generalized inner 

derivation operator but we considered norm attainability conditions for 

derivations in Banach-algebras. 

 

Okelo and Mogotu [59] gave norms of commutators of normal operators for 

generalized inequalities and established the commutations of derivation for 

orthogonality and norm inequalities. 

 

Theorem 2.49. [59, Thm. 3.2] Let the operators M, N, X ∈ B(H), the pair (M, 

N) satisfies Fuglede Putnam’s property and D ∈ ker(δ)M,N where D ∈ B(H) 

then ∥δM,N X + D∥ ≥ ∥D∥. 
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Theorem 2.49 investigates the lower norm estimate for a generalized deriva-

tion for a pair of operators (M, N) but we have determined norm estimate for 

inner derivation in Banach algebras. 

 

Corollary 2.50. [59, Cor. 3.3] Let the operators M, N, X ∈ B(H) and D ∈ 

ker(δM,N ) then ∥δM,N X + D∥ ≥ ∥D∥. 

 

Corollary 2.50 determines the lower norm estimate but we have considered 

norm estimate for derivations in Banach algebras. 

 

Okelo [60] characterized norm-attainable classes in terms of orthogonality 

by giving norm-attainability conditions that were necessary and sufficient for 

Hilbert space operators first and the orthogonality result on the ker-nel and 

range of norm-attainable classes in elementary-operators when implemented 

by norm attainable operators was given. 

 

Proposition 2.51. [60, Prop. 3.2] Let X and Y be norm-attainable Hermitian 

elements. Then δX,Y is also norm-attainable Hermitian. 

 

 

Proposition 2.51 gave the condition for generalized derivation for norm-

attainable Hermitian elements but we determined norm-attainability con-

dition for derivations in Banach algebras. 

 

Corollary 2.52. [60, Cor. 3.3] If A and B are norm attainable and normal 

elements in Ω then δA,B is also norm attainable and normal. 

 

 

Corollary 2.52 establishes norm-attainability condition of normal elements in 

Ω for a generalized derivation but we have considered inner derivations in 

Banach algebras. 
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Abolfazl [2] determined the norm of the inner Jordan ∗-derivation δS : 
 

T → ST − T ∗S acting on the Banach algebra B(H). It was shown that 
 

∥δS∥ ≥ 2 supλ∈W0(S) | λ| in which W0(S) is the maximal-numerical range of 

operator S. Determined the norm of inner Jordan ∗ derivation δS : 
 

T → ST − T ∗S which act on the Banach algebra B(H). It was shown that 

∥δS∥ ≥ 2 supλ∈W0(S) | λ| in which W0(S) is the maximal-numerical range of 

operator S. 

 

Theorem 2.53. [2, Thm. 2.1] Let H be a Hilbert-space and let S ∈ B(H). If λ 

∈ W0(S), then ∥δS∥ ≥ 2(∥S∥
2
 − |λ|

2
)
1

2 . 

 

Theorem 2.53 estimates the lower norm of a maximal numerical range of 

operator S but we have determined the norm estimate for norm-attainable 

derivations in Banach algebras. 

 

Corollary 2.54. [2, Cor. 2.2] Let H be a Hilbert-space and let S ∈ B(H) then 

∥δS∥ = 2∥S∥ if and only if 0 ∈ W0(S). 

 

Corollary 2.54 determines the norm of a maximal numerical range of op-

erator T but we considered norm estimate for norm-attainable derivations in 

Banach algebras. 

 

Gyan [28] obtained precisely when zero belongs to maximal numerical range 

of composition operators on H and then characterized the norm-attainability 

of derivations on B(H). 

 

Theorem 2.55. [28, Thm. 1.4] For B ∈ B(H 
 

λ ∈ C. 

 

), ∥δB∥ = 2 inf ∥B − λI∥ : 

 
 

Theorem 2.55 determined the norm of inner derivations but we deter-mined 

norm estimates for the derivations. 
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Theorem 2.56. [28, Thm. 1.5] For F ∈ B(H), 
 

∥δF,G∥ = inf ∥F − λI∥ + ∥G − λI∥ : λ ∈ C. 
 

 

Theorem 2.56 determined the norm of generalized derivations but we have 

determined norm estimates for the derivations. 

 

Okelo [71] norm-attainability for hyponormal operators that are compact 

were characterized, sufficient conditions for a compact hyponormal oper-ator 

that is linear and bounded on an infinite dimension for a complex Hilbert 

space to be norm attainable were given. Further, the structure and other 

properties of compact hyponormal operators when they are self-adjoint, 

normal and norm attainable with their commutators were discussed in 

general. 

 

Proposition 2.57. [71, Prop. 3.1] Let K
′
 ∈ B(H1, H2) be compact hy-

ponormal. Then 
 

 

(i). m(K
′
) = m(|K

′
|). 

 

(ii). m(K
′
) = d

′
(0, ζ(|K

′
|)). 

 

(iii). m(K
′
) > 0 if and only if R(K

′
) is closed and K

′
 is one-to one (K

′
 is 

bounded below). 

 

(iv). in particular if H1  = H2  = H and K
′−1

  ∈ B(H), then m(K
′
) =  

∥K′

1
−1∥

. 

  

(v). if H1 = H2 = H and K
′
 is normal, then 

 

(a) m(K
′
) = d(0, α(K

′
)). 
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(b) m(K
′
) = m(K

′∗). 
 

(c) m(K
′n

) = m(K
′
)
n
 for each n ∈ N. 

 

(vi). if K
′
 ≥ 0, then m(K

′
) = m(K

′
 
1

2 )
2
. 

 

 

Proposition 2.57 established conditions for compact and hyponormal op-

erators but we have considered norm-attainability conditions for deriva-tions 

in Banach algebras. 

 
 

 

2.3 Norm estimates for derivations 
 

 

Lumer [46] obtained a sharp estimate not only from |sp(R)| = spectral radius 

of R but also |sp(R)| in terms of sup(|X(R)|, |X(R
n
)|

1/n
), for an even integer n 

which is positive. These are 

√  

|sp(R)| ≤ 3 sup(|X(R)|, |X(R
2
)|

1/2
) 

√  

|sp(R)| ≤ ζn sup(|X(R)|, |X(R
n
)|

1/n
), n = 4, 6, 8..., where ζn = 7, generally, 

ζn can be calculated as a polynomial root which depend on n. The question 

about the constants was answered completely for an estimate ∥R∥ ≤ c1|X(R)| 

+ c2|X(R
2
)|

1/2
 which was expressed as 

 

sup α(|X(R)|, β|X(R
2
)|

1/2
) and then compared the estimates. Fur-ther, the 

aspects of general problem were discussed and then gave ap-plications by 

introducing an invariant δ(C) defined for all unital Banach algebra C. 

 
 
 

Theorem 2.58. [46, Thm. 1] There ∃ constants c1, c2 such that for any real 

Banach-space Y, one has ∥A∥ ≤ c1|W ′(A)| + c2|W ′(A2
)|

1/2
, ∀ A ∈ 
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B(Y ). 
 

 

Theorem 2.58 discussed the upper norm estimate but we have considered 

lower norm estimates for derivations in Banach algebras. 

 

Archbold [1] investigated whether the simple triangle inequality ∥T (a, A)∥ ≤ 

2t(a, Z) if applied holds. D(A) was defined to be a minimum value D in [0, ∞] 

so that t(a, Z) ≤ D∥T (a, A)∥. The behaviour of D in ideals and quotients were 

discussed which proved that Ds(A) ≤ 1 for a weakly cen-tral C∗-algebra A and 

considered a class of n-homogeneous C∗-algebras that are special. D and Ds 

was investigated and approximated finite-dimension (AF )C∗-algebra in that 

context and an example was given to show certain estimates. 
 
 

 

Proposition 2.59. [1, Thm. 4.1] Let P be an ideal of a C∗ algebra U. 
 

Then T (P ) ≤ 2T (U). 
 

 

Theorem 2.59 determined the upper norm estimate but we have estab-lished 

the norm estimate for norm-attainable derivations in Banach alge-bras. 

 

 

Fong [25] considered λ(M) defined as the smallest number ∥Z∥
2
 of Z that 

satisfy [Z∗, Z] = M and showed that 1 ≤ λ(M) ≤ 2 and λ(M), M was suitably 

chosen if it is close to 2. 

 

Proposition 2.60. [25, Prop. 1] If [S∗, S] = T, then ∥S∥
2
 ≥ ∥T ∥. 

 
 

Proposition 2.60 established the lower estimates for operators that are self-

adjoint. In this study we have determined lower-estimates for norm 

attainable derivations in Banach-algebras. 
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Proposition 2.61. [25, Prop. 2] If K is a self-adjoint matrix with trK = 0, then 

there exists some matrix W ′ such that [W ′∗, W ′] = K and ∥W ′∥2
 ≤ 2∥K∥. 

 
 

 

Proposition 2.61 investigated the upper estimates for self-adjoint opera-tor. 

In this study we have determined upper-estimates for norm attainable 

derivations in Banach-algebras. 

 

Matej [47] estimated the distance of d1d2 to the generalized derivations and 

the normed algebra of M
′
 and considered the cases when M

′
 is an ultraprime, 

when d1 = d2 and M
′
 are ultrasemiprime and when a Von Neumann algebra 

is M
′
 from the equation ∥M

′
 + R

′
∥ = ∥M

′
∥ + ∥R

′
∥, M

′
, R

′
 ∈ B(H). 

 

 

Theorem 2.62. [47, Thm. 1] Let E be an ultraprime normed-algebra, and let 

d1, d2 ∈ δb(E). If a constant c > 0 satisfies, then dist(d1d2, δb(E)) ≥ 

(c
2
/6)∥d1∥∥d2∥. 

 

Theorem 2.62 discussed the lower estimate for ultraprime normed algebra 

and we have considered lower norm estimate for derivations in Banach 

algebras. 

 

Theorem 2.63. [47, Thm. 3] Let A be a Von-Neumann algebra. If d1, d2 ∈ 

δb(A), then dist(d1d2, δb(A)) ≤ (1/2)∥d1∥∥d2∥. For every 
 

dist(d
2
, δb(A)) = (1/2)∥d∥

2
. 

 

 

Theorem 2.63 discussed the upper estimate for a Von Neumann algebra and 

we have considered upper norm estimate for derivations in Banach algebras. 
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Baxter [6] provided the supremum on ∥B
−1

∥2 when the points (yi)
n

1 form a 

subset of the integer L
d
, and a conditional definite negative function 

 

ϕ of order 1, which included the multi-quadric for functions set that are 

large. Further, a constructive proof was provided that a minimum bound is 

not valid and a relevant method to analyze the problem on estimation of 

eigenvalues such an interpolation matrix was commented on. 

 

Theorem 2.64. [6, Thm. 4.1] Let B ∈ R
nxn

 be a symmetric matrix with 

eigenvalues α1 ≥ ... ≥ αn. Let D be any subspace of R
n
 of dimension m. Then 

we have the inequality max{s
T
 Bs : s

T
 s = 1, s⊥D} ≥ αm+1. 

 

Theorem 2.64 established the lower estimate of symmetric matrix with 

eigenvalues but we have determined the lower norm estimate for deriva-tions 

in Banach algebras. 

 

Kittaneh [40] established the orthogonality, kernel and the range of a normal 

derivation with its association to operators of norm ideals. Results relating to 

orthogonality of some derivation that are not normal were obtained. 

 

 

Theorem 2.65. [40, Thm. 1] Let M ∈ B(H) be normal, S ∈ M
′
, and 

 

T ∈ B(H). If δM (T ) + S ∈ K|∥.∥|, then S ∈ K|∥.∥| and | δM (T ) + S | ≥ | S |. 
 
 
 
 

Theorem 2.65 investigates the lower norm estimate for an inner derivation 

but we have determined for a generalized derivation in Banach algebras. 

 

Corollary 2.66. [40, Cor. 1] Let P, Q, R ∈ B(H) such that P and Q are 

normal and P R = RQ. If Y ∈ B(H) such that δP,Q(Y ) + S ∈ K| . |, then S ∈ 

K|∥.∥| and | δP,Q(Y ) + S | ≥ | S |. 
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Corollary 2.66 discussed the lower norm estimate for a generalized deriva-

tion but we have determined for an inner derivation in Banach algebras. 

 

Stacho and Zalar [89] established the lower estimates for elementary op-

erators of Jordan type in standard Banach algebras. 

 

Proposition 2.67. [89, Prop. 2] The estimate ∥Ua,b∥ ≥ ∥a∥.∥b∥+ | a, b | holds. 
 
 
 

 

Proposition 2.67 established the lower norm estimate for a generalized 

derivation for elementary operators but we determined the norm estimate for 

an inner derivation in Banach algebras. 

 

Theorem 2.68. [89, Thm. 4] Let A be a standard operator algebra which acts 

on a Hilbert space H. If c, d ∈ A, then the uniform estimate ∥Uc,d∥ ≥ 
√  

2( 2 − 1)∥c∥.∥d∥ holds. 
 

 

Theorem 2.68 considered the uniform estimate for a generalized derivation 

in a standard Banach algebra but we have investigated norm estimate for an 

inner derivation in Banach algebras. 

 

Danko [20] [20] established that for all unitarily invariant norms and for 

bounded Hilbert space operators there holds ∥||C−D|
q
|∥ ≤ 2

q−1
∥|C|C|

q−1
− 

D|D|
q−1

|∥, q ≥ 2, if in addition, C and D are self-adjoint then ||||CX + XD|
q
||| 

≤ 2
q−1

||X||
q−1

||||A|
q−1

CX + XD|D|
q−1

|||, for all real q ≥ 3. 

 

Theorem 2.69. [20, Thm. 3.1] If X and some self-adjoint C and D are in 

B(H), then |∥|CX + XD|
p
∥| ≤ 2

p−1
∥X∥

p−1
|∥|C|

p−1
CX + XD|D|

p−1
∥| for all 

real p ≥ 3 and for all unitarily invariant norms |∥.∥|. 
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Theorem 2.69 determined the upper bound for unitarily invariant norms but 

we have investigated the lower bound for norm-attainable derivations in 

Banach algebras. 

 

Shinji [86] established that for a holomorphic functions f with Re{gf
′
(g)} > 

 

α and Re{gf
′′
(g)/f

′
(g)} > α − 1, (0 ≤ α < 1) respectively in {|g| < 1}, 

estimates of sup|g|<1(1−|g|
2
)|f

′′
(g)/f

′
(g)| were given and functions Gelfer-

convex of exponential order α, β was also considered. 

 

Theorem 2.70. [86, Thm. 3] Let −∞ < β < +∞, 0 ≤ α ≤ 1 and γ ≥ 0. 
 

Then for f ∈ KG(β, α, γ) we have ∥f∥ ≤ |1 − β|M(α) + 2γ. 
 

 

Theorem 2.70 determines the upper norm estimate for holomorphic func-

tions. In this study we have determined norm estimates for derivations in 

Banach algebras. 

 

Milos, Dragoljub [52] considered elementary operators x → 
 

that acts on a Banach algebra, vj and wj denotes separate generalized scalar 

elements of commuting families. The ascent estimation and lower bound 

estimation of an operator was given. Additionally, Fuglede-Putnam theorem 

for elementary operator is a weak variant with vj and wj are strongly 

commuting families were given i.e vj = vj
′
 + ivj

′′
(wj = wj

′
 + wj

′′
), for all vj

′
 and 

vj
′′
 (wj and wj

′′
) commutes. Further, result concerning L

1
 estimate in Fourier 

transform of a class Ccpt
∞

 function in R
2n

 was obtained. 
 

Lemma 2.71. [52, Lem. 2.2] Let T ⊆ R
2n

 be a set of balanced Hausdorff 

dimension c. Then for all δ > 0 there exist open set Uδ ⊃ T, such that mUδ ≤ 

C(T, n)δ
2n−c

 and distT, Uδ
C

 ≥ δ/P. 

 

Lemma 2.71 determined the lower estimate for a general derivation and 
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we have discussed the lower estimate for inner and generalized derivations in 

Banach algebras. 

 

Barraa and Boumazgour [7] characterized that the norm of bounded op-

erators more than one in a Hilbert-space is the same summation of the norms 

which showed that δS,A,B is convexoid with the convex hull of its spectrum if 

and only if A and B are convexoid. 

 

Theorem 2.72. [7, Thm. 2.1] Let X, Y ∈ B(H) be non zero. Then the equation 

∥X +Y ∥ = ∥X∥+∥Y ∥ holds if and only if ∥X
′
∥∥Y ∥ ∈ W (X∗Y ). 

 

 

Theorem 2.72 discussed the operators of norm in a Hilbert space. In our 

study we have determined lower and upper norm estimate in norm-attainable 

derivations in Banach algebras. 

 

Corollary 2.73. [7, Cor. 2.3] Let Y, Z ∈ B(H) be non zero. If ∥Y ∥∥Z∥ ∈ 
 

W (Y ∗Z), then 0 ∈ ζap(∥Z∥Y − ∥Y ∥Z). The converse holds if any one of 
  

Y or Z is an isometric operator. 
 

 

Corollary 2.73 established the closure of numerical range of bounded op-

erators. In our study condition for norm-attainability of derivations in 

Banach algebras has determined. 

 

Richard [78] established the CB-norms of elementary operators and the 

lower bounds for norms on B(H). The result was concerned with the oper-

ator UA,BX = AXB + BXA which showed that  UA,B∥ ≥ ∥A∥∥B∥ which proved 

a conjecture of Mathieu, other results and formula of  UA,B∥CB and  UA,B∥ 

were established. 
 

Theorem 2.74. [78, Thm. 2] Assume that H is two-dimensional and D, E ∈ 

B(H). Let UD,E(X) = DXE+EXD. Then  UD,E∥CB ≥ ∥D∥2∥E∥2. 
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Theorem 2.74 determined the lower bound for Jordan elementary oper-ator. 

In this study we have determined lower norm estimates in norm-attainable 

derivations in Banach algebras. 

 

Theorem 2.75. [78, Thm. 6] If C, D ∈ B(H) and UC,D(X) = CXD + DXC. 

Then  UC,D∥ ≥ ∥C∥∥D∥. 

 

Theorem 2.75 determined the lower bound for Jordan elementary opera-tor. 

In this study we determined lower norm-estimates in norm attainable 

derivatives in Banach-algebras. 

 

Richard [79] provided the estimation on the norm of elementary operators 

that are completely bounded was a direct proof which was possible in B(H) 

through a generalized theorem by Stampfli [87] and it was shown that an 

operator J of length l equals to m-norm and m = l. 

 

Theorem 2.76. [79, Thm. 4.3] If k ≥ 1 and A is a continuous trace C∗-algebra 

which is not K subhomogeneous, then there exists an elementary 
∑

k+1  

operator T ∈ El(A), T (x) = i=1 fixgi, fi, gi ∈ A for 1 ≤ i ≤ k + 1 with ∥T ∥k < 

∥∥cb. 

 

Theorem 2.76 determined the upper norm estimate for elementary op-erator 

but we have considered the norm-estimates for norm attainable derivations in 

Banach-algebras. 

√  

Seddik [81] proved that lower estimate bound ∥TM,N ∥ ≥ 2( 2−1)∥M∥∥N∥ 

holds, if it satisfies one of the conditions: (i). A standard operator alge-bra on 

B(H) is L and M, N ∈ L, (ii). L is a norm ideal on B(H) and M, N ∈ B(H). 
 
 

Lemma 2.77. [81, Lem. 1] We have the following properties: 
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(i).  UJ,C,D∥ ≥ sup{| Ca, y Dx, v + Da, y Cx, v | : ∥a∥ = ∥y∥ = ∥x∥ = ∥v∥ = 1}. 
 

 

(ii).  UJ,C,D∥ ≥ 2w(C∗D). 

 

Lemma 2.77 gave the norm and lower norm estimates for maximal numer-

ical range of operators C, D but we have established norm attainability 

conditions for derivatives in Banach algebras. 

 

Theorem 2.78. [81, Thm. 4] We have the following property: 
 

√  

∥UJ,A,B∥ ≥ 2(  2 − 1)∥A∥∥B∥. 

 

Theorem 2.78 investigates the lower bound in a standard operator algebra. 

This study we have determined lower and upper norm estimate in norm-

attainable derivations in Banach algebras. 

 

Florin, Alexandra [26] estimated the norm of operator Hζ,λ = Uζ + Uζ
∗ + 

(λ/2)(Vζ + Vζ
∗) which is an element on a C∗-algebra Aζ = C∗(Uζ, Vζ uni-taries 

: UζVζ = e
2πiζ

VζUζ). Further, proved for every λ ∈ C and ζ ∈ [
1

4 , 12 ] 
 

the inequality ∥Hζ,λ∥ ≤ √ 
4+λ

2
−(1− 

 1  
)(1 − 

1+cos
2
 4πζ 

)min{4, λ
2
}. tan ζ,λ  2    

             √   √     
1 

 
1                      

This improved the significance of the inequality ∥Hζ,2∥ ≤ 2 

 

2,ζ∈[ 

 

, 

 

],  4 2 

Lemma 2.79. [26, Lem. 2.2] For every ζ  [0, 1 ],  X  X     cos(2m 
        

        

∈ 
2  

| ∑m 

m  

m−1 

    

− 1)πζ 

| ≤ √ 
1+| cos 2πζ| .             

                  

 2                        
Lemma 2.79 determined the upper estimate for almost Mathieu operators but 

we have established the upper estimate for norm-attainable deriva-tions. 

 

Lemma 2.80. [26, Lem. 3.1] If (Ym)m∈Zq is a unit vector in l
2
(Zq), then 

∑ ∑ √  

2 m Cm
2
Ym

2
 + m Ym+1Ym−1 ≤ 1 +  2(1 + cos

2
 4πζ). 
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Lemma 2.80 established the upper estimate for a unit vector. In this study we 

have determined upper norm-estimates for norm attainable derivations in 

Banach-algebras. 

 

Man-Duen, Chi-kwong [50] showed that triangle inequality served an up-per 

norm bound of an ultimate estimate for the sum operators that is sup{ T ∗RT 

+ V ∗SV ∥ : T and V } are unitaries 
 

= min ∥R + λI∥ + ∥S − λI∥ : λ ∈ C. The result discussed had rela-tionship 

to normal dilations, spectral sets and the Von Neumann inequal- 
 

ity. 
 
 

Corollary 2.81. [50, Cor 3.2] Let P, Q ∈ B(H). Then ∥P + Q∥ ≤ sup{ U∗P U + 

V ∗QV ∥ : U andV areunitaries}. The equality holds if and only if there exists 

µ0 ∈ C, such that ∥P + Q∥ = ∥P + µ0I∥ + ∥Q − µ0I∥. 
 
 

Corollary 2.81 determined norm of the normal operators but we have 

determined upper and lower norm estimates for derivations. 

 

Gil [29] considered commuting matrices of matrix valued analytic function 

and established a norm estimate, in particular, two matrices of matrix valued 

functions on a tensor product in a Euclidean space were explored. 

 

Theorem 2.82. [29, Thm. 1.1] Let S and T be commuting n x n-matrices and 

f(z, w) be regular on a neighborhood of co(S) X co(T ). 

Then ∥f(S, T )∥ ≤ ∑j+k≤n−1
 ε ε g

j
(T ) sup |f

j,k
(z, w)|. 

j,k=0 j  k z∈co(s),w∈co(T ) 
 
 

Theorem 2.82 considered the norm estimate for commuting matrices but we 

have determined upper and lower norm-estimates for norm attainable 

derivations in Banach-algebras. 
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Yong, Toshiyuki [95] gave a norm estimate on pre-schwarzian derivatives of 

a specific type of convex functions by introducing a maximal operator of 

independent interest of a given kind. The relationship between the convex 

functions and the Hardy spaces was discussed. 

 

Theorem 2.83. [95, Thm. 4.3] Let −1 ≤ N < M ≤ 1. If f ∈ K(θM,N), 
2(M−N) 

then ∥Tf ∥ ≤ 1+
√

1−N2 , and equality holds when f = KθM,A.  
 
 

Theorem 2.83 established the upper estimate for the univalent functions. In 

this study we have determined lower and upper norm-estimates for norm 

attainable derivations in Banach-algebras. 

 

Corollary 2.84. [95, Cor. 4.5] Let 0 ≤ t ≤ 1, functions f ∈ Sθ
∗
−t,t 

satisfy the inequality ∥Tf ∥ ≤ 

4t 

+ 2t. 1+
√ 

 

1−t
2 

 
 

Corollary 2.84 established the upper estimate for the univalent functions. In 

this study we have determined lower and upper norm estimates for norm-

attainable derivations in Banach algebras. 

 

Bonyo and Agure [10] characterized the norm ideal on norm of inner 

derivation to be equal to the quotient algebra and investigated them when the 

normal and hyponormal operators are implementing them on norm ideals. 

 
 
 

Theorem 2.85. [10, Thm. 2.1] Let J be a norm ideal in B(H) and B ∈ B(H). 

Then ∥δ[B]|B(H)/J∥ ≤ 2d(B). 

 

Theorem 2.85 determined the upper norm estimate for an inner derivation 

but we have established norm estimate for a generalized derivation in 

Banach algebras. 
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Theorem 2.86. [10, Thm. 2.5] Let B(H) be the algebra of bounded linear 

operators on a Hilbert space H, J is a primitive norm ideal in B(H). Then for 

an S-universal operator B ∈ B(H), ∥δ[B]|B(H)/J∥ = ∥δB|J∥. 

 

Theorem 2.86 determined the norm of inner derivation but we have con-

sidered norm of generalized derivation in Banach algebras. 

 

Bonyo and Agure [11] investigated the relation between the inner deriva-tion 

implemented by Z on norm J and the numerical-range of an operator 
 

Z ∈ B(H) with its diameter and considered application of T -universality on 

the relation. 

 

Theorem 2.87. [11, Thm. 2.3] For any operator X ∈ B(H) and each norm 

ideal J in B(H), diameter (W (X)) ≤ ∥δX |J∥. 

 

Theorem 2.87 discussed the upper norm estimate for a the diameter of 

numerical range in a norm ideal but we have established norm-estimates in 

norm attainable derivations in Banach-algebras. 

 

Okelo, Okongo and Nyakiti [58] investigated the project tensor-product, VΓ
′ ⊗

ρ 

WΓ
′
 of these algebras. It was established that ∥∆S′ ∥ ≤ ∥∆

(1)
S′ + ∆

(2)
S′∥ ≤ 2∥∆S′ ∥ 

holds if λ = ∑i vi
′ ⊗wi

′
 belongs to AΓ ⊗ρ BΓ and ∆S′ on  

λ is a norm-attainable α-derivation given by ∆S′ = ∆
(1)

S′ + ∆
(2)

S′. 

 

Lemma 2.88. [58, Lem. 4.2] If δN
(1)
, δN

(2)
 are norm-attainable α and α

′
-

derivations respectively, then δN = δN
(1)

 + δN
(2)

 is norm-attainable. 

 

Lemma 2.88 shows the sum of δN
(1)
, δN

(2)
 inner derivations are norm-

attainable but we have done norm-attainability for a generalized deriva-tion 

in Banach algebras. 
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Theorem 2.89. [58, Thm. 4.3] Let δN , δN
(1)

 and δN
(2)

 be norm attainable α, 

α
′
 and α

′′
-derivations respectively where ∥δN ∥ = ∥δN

(1)
∥ + ∥δN

(2)
∥, then ∥δN 

∥ ≤ ∥δN
(1)

∥ + ∥δN
(2)

∥ ≤ 2∥δN ∥. 
 
 

Theorem 2.89 investigates the norm and upper norm estimate for inner 

derivations but we have discussed norm of a generalized derivations in 

Banach algebras. 

 

Bonyo and Agure [9] gave the definition of inner derivations implemented 

by A, B respectively on B(H) as δA(Y ) = AY − Y A δB(Y ) = BY − Y B and 

generalized derivation by δA,B (Y ) = AY −Y B ∀ Y ∈ B(H). Further, 

a relation between the norms of δA, δB and δA,B on B(H) was specifically 

established when the operators A, B are S-universal. 

 

Theorem 2.90. [9, Thm. 3.1] If C ∈ B(H) is S-universal, then ∥δC |B(H)∥ = 2∥C∥. 
 
 
 

 

Theorem 2.90 determines the norm of inner derivation but we have con-

sidered the norm-attainable conditions in Banach algebras. 

 

Theorem 2.91. [9, Thm. 3.2] Let C, D ∈ B(H) be S-universal. Then 
 

∥δC,D|B(H)∥ ≤ 12 (∥δC|B(H)∥ + ∥δD|B(H)∥). 
 

 

Theorem 2.91 investigates the upper norm estimate for an inner and 

derivations. This study we have determined upper and lower estimates for 

norm attainable derivatives in Banach-algebras. 

 

Pablo, Jussi [75] provided theoretic estimate of two functions for the es-

sential norm as a composition operator Cθ that acts on the space BM OA 
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(bounded mean oscillation for analytic functions); one in terms of the n-th 

power θ
n
 denoted by θ and the other involved the Nevanlinna counting 

function. 

 

Lemma 2.92. [75, Lem. 2.3] Let θ be an analytic self-map of K. Then lim 

sup
|θ(b)|→1 ∥ζθ(b) ◦ θ∥

∗,2 ≤ 2 lim sup
n→∞ ∥θn∥ and 

 

lim sup
|θ(b)|→1 ∥ζθ(b) 

◦
 
θ∥

β 
≤
 
2 lim sup

n→∞ ∥θn∥
β

. 

 

Lemma 2.92 determined the upper estimate for analytic self-map but we 

have discussed the upper norm estimates for derivations in Banach algebras. 

 

 

Lemma 2.93. [75, Lem. 3.2] We have 

 

lim sup
|θ(a)|→1 ∥θa

∥
2 
≤ ∥C

θ
∥

e,BMOA

. 

 

Lemma 2.93 discussed the upper estimate composition of operators. In this 

study we have determined the norm-estimates for norm attainable derivations 

in Banach-algebras. 

 

Kingangi, Agure and Nyamwala [43] attempted the result on lower bound of 

the norms for finite dimensional operators. 

 

Theorem 2.94. [43, Thm. 2.2] Let UA,S be the Jordan-elementary opera-tor 

with A, S ∈ B(H) fixed, and with S =  0. Then ∥UA,S∥ ≥ supλ∈WS(A∗,S){  
 

∥S∥A+ ∥S
λ
∥S  }, where WS(A∗, S) is the maximal numerical range of A∗, S 

relative to S, A∗ is the Hilbert adjoint of S. 
 

 

Theorem 2.94 established the lower estimate on the maximal numerical 

range of operator but we considered lower estimate for norm-attainable 

derivations in Banach algebras. 
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Corollary 2.95. [43, Cor. 2.3] Let H be a complex Hilbert space and X
′
, Y ′ be 

bounded linear operators on H. Let 0 ∈ WY ′ (X
′∗, S)∪WX′ (Y ′∗, X′

). Then we 

have UX′,Y ′ ≥ ∥X
′
∥∥Y ′∥. 

 

Corollary 2.95 determined the lower estimate on Jordan elementary oper-

ators but we have determined lower norm-estimates for norm attainable 

derivations in Banach algebras. 

 

Odero, Agure, Rao [57] determined the norm of symmetric operator in an 

algebra which is two-sided. More precisely, investigated the injection of 

tensor norm through the lower bound of the operator. In addition, the 

irreducible C∗-algebra on the inner derivation norm was determined and 

Stampfli [87] confirmed the result for these algebras. 

 

Theorem 2.96. [57, Lem. 3.3] Let µ ∈ W (T ). Then ∥δT ∥ ≥ 2(∥T ∥
2
 − 

 

|µ|
2
)
1/2

. 
 

 

Lemma 2.96 determined the lower estimate for a derivation but we have 

considered upper estimate for derivation in Banach algebras. 

 

Theorem 2.97. [57, Thm. 3.4] ∥δS∥ = 2∥S∥ if and only if 0 ∈ W (S). 
 

 

Theorem 2.97 established the norm of a derivation on a numerical range but 

we have determined the norm estimate for the derivation in Banach algebras. 

 

 

Kinyanjui [41] estimated the norm-attainability for elementary opera-tor on 

inner-derivation, generalized-derivation, basic-elementary operator and 

Jordan-elementary operator under norms. 
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Theorem 2.98. [41, Thm. 2.3] Let H be an infinite dimensional complex 

nonseparable Hilbert space and ε[N A(H)] be the set of all norm-attainable 

operators. Let MS,T ∈ ε[N A(H)] and X ∈ H be defined by MS,T = SXT then, 

∥MS,T (X)∥ = ∥S∥∥T ∥. 
 
 

Theorem 2.98 discussed norm-attainability for basic elementary operators 

under but we have determined upper and lower norm-estimates for norm 

attainable derivations in Banach-algebras. 

 

Wafula, Okelo and Ongati [93] studied normally represented operator which 

is a special type of elementary operator and results showed that elementary 

equals its largest single value that is Ui(M) = ∥M∥ since 
S

A,B = A  hB + B hA is represented normally, then ∥SA,B∥Inj  ≥ 
√      A  B . ⊗ 

2(  2  1)   

   −  ∥  ∥∥ ∥  
 

Proposition 2.99. [93, Prop. 4.13] Let H be a complex-Hilbert space and 
 

M : B(H) → B(H) be a basic elementary operator. Then Si(M) = ∥M∥ 
 

such that Si(M) are singular values of M. 
 

 

Proposition 2.99 found the norm-attainability for basic elementary oper-ator 

but we have established norm-attainability for derivations in Banach 

algebras. 

 

Theorem 2.100. [93, Thm. 4.14] Let UA,B(Y ) = AY B + BY A be nor-mally 

represented then,  UA,B∥CB ≥ ∥A∥∥B∥ for A, B ∈ B(H). 
 
 

Theorem 2.100 investigated the lower norm estimate for a generalized 

derivation but we have considered norm estimate for inner derivation in 

Banach algebras. 
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Elena, Lorenza, Ivan [24] studied properties of continuity of module spaces 

for operators of η-pseudo-differential Opη(c) in a Wiener amalgan space with 

a symbols c and obtained a bounded result for η ∈ (0, 1) where η = 0 and η = 1 

at end points and other operators were unbounded. In addition, it was 

exhibited the operator norm for the function η ∈ (0, 1) has an upper bound 

which is independent on parameter η ∈ (0, 1) was found. 
 

Proposition 2.101. [24, Prop. 4.2] Let m ∈ Mv(R
2d

) then a ∈ X(FL
2

v, L
2
)(R

2d
) and η 

∈ (0, 1). Then the operator Opη (b) is bounded on Mm
2
 with ∥Opη (b)f∥Mm2 ≤ 

C∥b∥FL2v,L2 ∥f∥Mm2 , where the constant C > 0 is independent of η. 

 

Proposition [2.101] established the upper bound η-pseudo-differential op-

erators but we have considered norm-estimates for norm attainable deriva-

tions in Banach algebras. 

 

From the above literature review it is very clear that norm-attainability for 

elementary operators have been done thus we have determined norms of 

derivations as an example of elementary-operators when they are im-

plemented by operators that are norm attainable and we have estimated the 

norms of derivations in Banach algebras. 
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Chapter 3 
 
 

 

RESEARCH 
 

METHODOLOGY 
 
 
 
 
 
 

3.1 Introduction 
 

 

The research methods involves the use of known inequalities like Cauchy-

Schwarz inequality, triangle inequality, H¨olders inequality, Bessel’s in-

equality. Technical approaches like direct sum, polar decomposition and 

tensor product were useful to our work. 

 
 

 

3.2 Known inequalities 
 
 
 

3.2.1 Cauchy-Schwarz inequality 
 

 
            

Let the inner product space be S
′
 and ∥s

′
∥ =   s

′
, s

′ 
∀ s

′
 ∈ S

′
 then 

| s
′
, t
′
 | ≤ ∥s

′
∥∥t

′
∥ ∀ s

′
, t
′
 ∈ S

′
. Indeed, if t

′
 = 0

√
and  s

′
, 0  = 0 then the 

equality is satisfied. Let t
′
 = 0. For any scalar α, 0 

≤ ∥ 

s
′ 

− 

αt
′ 

∥ 

2
 = 

 

s
′ 

−        
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αt
′
, s

′
−αt

′
 s

′
, s

′
 −α s

′
, t
′
 −α[ t

′
, s

′
 −α t

′
, t
′
 ], let α[ t

′
, s

′
 −α t

′
, t
′
 ] = 0. 

 
t
′
,s
′ 

If we choose α t′,t′ , then we have  
 

0 ≤ s′, s′ − 
t′, s′ s′, t′ t

′
, 

t
′
  

≤ ∥s′∥2 − | s′, t′ |2 (multiply by ∥t′∥2) 

∥t
′
∥

2 

≤ ∥s
′
∥

2
∥t
′
∥

2
 − | s

′
, t
′
 |

2
 

 

≤ ∥s
′
∥

2
∥t
′
∥

2
. 

 

 

Taking positive square roots it yields | s
′
, t
′
 | ≤ ∥s

′
∥∥t

′
∥. 

 

Cauchy-Schwarz inequality will be used to determine the upper norm-

estimates for norm attainable derivations in Banach-algebras. 

 

 

3.2.2 Triangle inequality 
 

 

∀s, t ∈ S, ∥s + t∥ ≤ ∥s∥ + ∥t∥. Indeed ∥s + t∥
2
 = s + t, s + t 

 

∥s + t∥
2
   = s + t, s + t 

 

= s, s + s, t + t, s + t, t 
 

= s, s + s, t + s, t + t, t 
 

= s, s + 2Re s, t + t, t  
 

≤ s, s + 2| s, t | + t, t 
 

= ∥s∥
2
 + 2∥s∥∥t∥ + ∥t∥

2
 

 

≤ (∥s∥ + ∥t∥)
2 

 

 

Taking positive square root it yields ∥s + t∥ ≤ ∥s∥ + ∥t∥. 
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Triangle inequality will be used to determine the upper norm-estimates for 

norm attainable derivations in Banach-algebras. 

 

 

3.2.3  Ho¨lder’s Inequality      

Let sn lx and tn ∈ ly where x > 1 and 1/x+1/y = 1, then k
∞

=1 |tksk| ≤ 

( ∞ 
∈sk 

| 
x)1/x( ∞ tk 

| 

y)1/y.     ∑  
∑ k=1 |    

∑
k=1 |            

Indeed if ∑k
∞

=1 |sk|
x
 = 0 or ∑k

∞
=1 |tk|

y
 = 0 then the inequality holds.  

Assume ∑k
∞

=1 |sk|
x
  = 0 and ∑k

∞
=1 |tk|

y
  = 0  

|sk||tk| 

≤ 

 then k = 1, 2, .. by Young’s inequality then 

(
∑

k
∞

=1 

1/x 

|sk|
x    

+ 1/y 

|tk|
y      |sk|

x
)
1/x

( 
∑

k
∞

=1 |tk|
y
)
1/y 

∑
k
∞

=1 |sk|
x ∑

k
∞

=1 |tk|
y 
        

 hence ( k
∞

=1   ∞ 
s

k
y

k tk 
y
)
1/y 

 1/x + 1/y = 1    
  sk∑x)1/x(|  k∞=1| 

≤ 
   

           k=1            

      ∑  | |   ∑  | |       

⇒ ∑∞
k=1 |sktk| ≤ (

∑∞
k=1 |sk|

x
)
1/x

(
∑∞

k=1 |tk|
y
)
1/y

. 
 

H¨older’s Inequality will be of significance in the determination of the upper 

norm-estimates for norm attainable derivations in Banach-algebras. 

 
 
 

3.2.4 Bessel’s inequality 
 

 

Let[vi]
∞

i=1 be an orthonormal set in an inner product space D then for an 

arbitrary d ∈ D, ∑∞
i=1 | d, vi |

2
 ≤ ∥d∥

2
. Indeed we are supposed to show 
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that 0 ≤ ∥d − ∑m
i=1 d, vi vi∥

2
. Let αi = d, vi 

∑i           
m           

0  ≤ ∥d −   αivi∥
2 

       
=1           

m    m       

≤  d −   αivi, d −   αivi    
=1    i=1       

∑i  m ∑ m m  m 
∑  ∑ 

∑
i ∑ 

≤  d, d − d   αivi  − αivi, x +  αiviαivi 
∑ i=1  i=1 =1 i=1 

    ∑ ∑i ∑ 

m     m m  m 

≤ ∥d∥
2
 − 

  

d, vi  − 
 

αi vi, x + 
 

αiαi vi, vi  vi, vi  
α

i  
i=1    ∑ i=1 =1  i=1 

∑i       ∑   

m    m    m   

≤ ∥d∥
2
 − 

  

αi +    αi 

 

+    |αi|
2 

  

 αi αi   
=1    i=1    i=1   

∑i           

m  

|αi|
2 

       

≤ ∥d∥
2
 −         

=1           

 

∑m
i=1 |αi|

2
 ≤ ∥d∥

2
. 

 

Bessel’s inequality will be used to determine the upper norm-estimates for 

norm attainable derivations in Banach-algebras. 

 
 

 

3.3 Technical approaches 
 

 

In this section technical approach such as tensor product was used to solve 

the problem stated. We employed polar decomposition and direct sum 

decomposition in determining norm-attainability conditions and norm es-

timates for derivations. 
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3.3.1 Tensor product 
 

 

If S and T are vector spaces over K, let M be the subspace of the vector space 

KSxT then the vectors α(s, t) + β(s
′
, t) − (αs + βs

′
, t) and α(s, t) + 

 

β (s, t
′
) − (s, αt + βt

′
) ∀ α, β ∈ K and s, s

′
 ∈ S and t, t

′
 ∈ T are generated. 

 

Then the space of the quotient KSxT /M is the tensor product of S and 
⊗ 

T which is denoted by S T. 

 

The technical approach was useful in determining norm estimates. 
 
 

 

3.3.2 Direct sum decomposition 
 

 

A vector space Y is a direct sum of two subspaces A
′
 and B

′
 of Y written as Y 

= A
′ ⊕B

′
, if each y ∈ Y is uniquely represented by y = a

′
 + b

′
, a

′
 ∈ A

′
, b

′
 ∈ B

′
. 

 

 

Direct sum decomposition was used to prove that various derivations are 

norm-attainable. 

 

 

3.3.3 Polar decomposition 
 

 

Let X ∈ B(H), then a partially isometry W exists with initial space R(X∗) and 

final space R(X) such that X = W (X∗X
′
)
1/2

 = (XX∗)
1/2

W. 
 
 

Polar decomposition has been used to find square roots of operators on 

Lemmas and theorems in our proofs. 
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Chapter 4 
 
 

 

RESULTS AND 
 

DISCUSSION 
 
 
 
 
 
 

4.1 Introduction 
 

 

In this chapter, we give results obtained on norm-attainability conditions for 

derivations, upper norm estimates for derivations and lower norm estimates 

for derivations in Banach algebras. 

 
 

 

4.2 Norm-attainability conditions 
 

 

In this section, we give results on norm-attainability conditions for deriva-

tions. We begin with the following proposition. 

 

Proposition 4.1. Let H be a complex Hilbert space and B
′
(H) the algebra of 

all bounded linear operators on H. A
′
 ∈ B

′
(H) is norm-attainable if and only 

if its adjoint A
′∗ ∈ B

′
(H) is norm-attainable. 
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Proof. Given A
′
 ∈ B

′
(H) is norm-attainable then we need to show that A

′∗ ∈ 

B
′
(H) is norm-attainable. If A

′
 ∈ B

′
(H) is norm attainable then by definition 

of norm-attainability there exist a unit vector x
′
 ∈ H with ∥x

′
∥ = 1 such that 

∥A
′
x
′
∥ = ∥A

′
∥. That is, ∥A

′
A
′∗x

′
∥ = ∥A

′2
x
′
∥. Let 

 

η = ∥
A

A
′x
′∥
′
 , then ε is a unit vector such that ∥ε∥ = 1 this implies that 

  

∥A
′∗ε∥ = ∥A

′
∥ = ∥A

′∗∥. Hence, A
′∗ is norm attainable. 

 

 

The next result gives norm-attainability conditions for operators via the 

essential numerical range. An analogy of the same can be found in [65]. 

 

Proposition 4.2. Let A
′
 ∈ B(H), λ ∈ Wess(A

′
) and ε > 0. Then there exists A

′
0 

∈ B(H) such that ∥A
′
∥ = ∥A

′
0∥ with ∥A

′
 − A

′
0∥ > ε. 

 

Proof. See [65] for the proof.  

 

Remark 4.3. The set of all norm attainable operators is denoted by N A(H), 

the set of all norm-attainable self adjoint operators is denoted by N A∗(H) and 

the set of all norm attainable elementary operators is denoted by ENA[B(H)]. 
 
 

 

At this point, we consider norm-attainability in a general set up. We begin 

with the following proposition. 

 

Proposition 4.4. Let D be the unit disc of a complex Hilbert-space H and A : 

H → H be compact and self adjoint. Then there exist x ∈ D such that ∥Ax∥ = 

∥A∥. 

 

Proof. By the definition of usual norm, we have ∥A∥ = supx∈D ∥Ax∥. So, there 

exist a sequence x1, x2, ..., xn ∈ D such that ∥Axn∥ = ∥A∥. But A is 
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compact so let y0 = limn→∞ Axn exist in H. Suppose Y = span{x1, x2}, then it 

is a closed subspace of H. If we pick a subsequence xnk of xn, then it 

converges weakly to x and we have done x, x = limk→∞ xnk , x and | xnk , x | ≤ 

∥xnk ∥∥x∥ = 1 for all k. Therefore, ∥x∥ ≤ 1 but we cannot have ∥x∥ < 1 since 

then ∥Ax∥ = ∥A∥∥x∥ < ∥T ∥ which is a contradiction. Thus, ∥x∥ = 1 that is x ∈ 

D. Hence, the existence of x is shown and thus completes the proof.  
 
 
 
 

At this point, we consider q-normality and q-norm-attainability. 

 

Lemma 4.5. Let A ∈ N A(H) then A is q-norm attainable if it is q normal. 
 
 
 

 

Proof. Let A ∈ N A(H) be q normal that is A
q
A∗ = A∗A

q
. Raising A∗ to power 

q and using it to replace A∗ we have A
q
(A∗)

q
 = (A∗)

q
A

q
. This shows that A

q
 is 

normal. Now A
q
A∗ = A∗A

q
 by Fuglede-property. Therefore, A is q normal. 

However, A ∈ N A(H) and A
q
 is normal so it follows that there exist a unit 

vector x ∈ H such that ∥A
q
x∥ = ∥A

q
∥, for any q ∈ N. Hence, A

q
 is norm 

attainable.  

 

Remark 4.6. Every norm attainable operator and every self adjoint op-erator 

is q-norm attainable and q normal for any q ∈ N. However, the converse 

need not be true in general see [66]. 

 

Lemma 4.7. Let N Aq(H) be the set of all q-norm-attainable operators on H. 

Then N Aq(H)is a closed subset of N A(H) which is algebraic if and only if 

for any A ∈ N A(H), A is q-normal. 

 

Proof. Let A be q-normal and pick λ ∈ K. By premultiplying by λ and 

postmultiplying by q as a power on the normal A we have (λA)
q
(λA)∗ = 
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(λA)∗(λA)
q
. This proves the normality of λA. Now if A ∈ N A(H) then the 

converse is true if we take limits over a sequence of vectors in H and also by 

Proposition 4.4. Therefore, A is a q-normal.  

 

Theorem 4.8. Let A ∈ N Aq(H). Then the following conditions are true. 
 

 

(i). A∗ is q-norm-attainable. 
 

(ii). V ′AV ′  is q-normal, for a unitary operator V ′ ∈ N Aq(H). 

 

(iii). A
−1

 is q-norm attainable if it exists. 

 

(iv). A0 = A/G is q-norm-attainable for some G which is a uniformly 

invariable subspace of H which reduces to A. 

 

(v). A0 is uniformly equivalent to A implies A0 is norm-attainable. 
 

 

Proof. (i). Since A ∈ N Aq(H) then from Lemma 4.5 A
q
 is q-norm at-tainable 

and so (A∗)
q
 is norm attainable. Consequently, A∗ is q-norm attainable. 

 
 

 

(ii). Since V unitary then V V ∗ = V ∗V = I, where I is the identity operator. 

By definition of norm-attainability and Lemma 4.5 we obtain the 

desired results. 

 

(iii). If A
−1

 exists then since A is q-norm attainable, A
q
 is q-norm attain-able. 

Now since A is q-norm-attainable then by Lemma 4.5 A
q
 is q-norm-

attainable. But (A
q
)
−1

 = (A
−1

)
q
 is q-norm-attainable. So A

−1
 is q-

norm-attainable. 
 

(iv). Follows from the fact that G invariant under A. 
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(v). Follows from (iii) since V is unitary.  
 
 
 

 

Corollary 4.9. Let A
q
, A

q
0 ∈ N Aq(H) be commuting operators, then A, A0 ∈ 

N Aq(H). 

 

Proof. Since A
q
, A

q
0 ∈ N Aq(H) are commuting then A, A0 are commuting 

normal operators. By supraposinormality of operators in dense classes we 

have A, A0 ∈ N Aq(H) and hence are norm-attainable. Indeed, A
q
A

q
0 = (AA0)

q
 

= (A0A)
q
 which is normal and norm attainable. Hence, A, A0 ∈ N Aq(H).  

 

Remark 4.10. Not all q-norm attainable operators are q normal. Thus, the 

following example shows that the two commuting q normal operators need 

not be q normal. 

 

     0 1   0 0   

Example 4.11. Let A = 1 0  and A0 = 0 1 . Now A + A0 = 
    0         

 1 1 and (A + A0)2 =  1 2 are not normal. So A + A0 is not 
 0 1    0 1       
2-normal. We note that A  is self-adjoint. 

 

Lemma 4.12. The sum of norm-attainable operators is norm attainable. 

 

  ˜ ˜    ˜ 
Proof. Consider A, B ∈ N A(H). We need to show that the sum of A 
 ˜   ˜ ˜    

and B is norm attainable. For A, B to be norm attainable then there 

exist a unit vector x ∈ H such that ∥x∥ = 1, 
˜   ˜ ˜ 

∥(A + B)x∥ = ∥Ax + 
˜ ˜ ˜ ˜ ˜ ˜˜ ˜ ˜ 

Bx∥ = ∥A + B∥ = ∥A∥ + ∥B∥. Since ∥Ax + Bx∥ ≤ ∥Ax∥ + ∥Bx∥ ≤ 
˜ ˜ ˜ ˜     

∥A∥ + ∥Bx∥ ≤ ∥A∥ + ∥B∥ then for an orthonormal sequence xn ∈ H 
  ˜ ˜ ˜ ˜ ˜ ˜ 

we have limn→∞(∥Axn + Bxn∥) = ∥Ax + Bx∥. But since A and B are 
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˜ ˜ ˜ ˜ ˜ ˜ 

norm-attainable we have ∥Ax + Bx∥ = ∥(A + B)x∥ = ∥A + B∥ is norm-

attainable.  
 
 

Theorem 4.13. A norm-attainable operator perturbed by an identity op-

erators is norm attainable. 

 
 

Proof. Let B ∈ B(H) be norm attainable. Since B is norm attainable then there 

exist a unit vector x0 ∈ H, an identity I ∈ B(H) and for every  

ε > 0 we have ∥(BI)x0∥ ≤ ∥BIx0∥ + ε ≤ ∥B∥∥I∥∥x0∥ + ε. Since ε is arbitrary 

then it follows that ∥(BI)x0∥ ≤ ∥B∥∥I∥∥x0∥ = ∥B∥. Hence, 
 

∥(BI)x0∥ = ∥B∥. 
 

 

At this point, we consider norm attainability for elementary-operators. 
 

We begin with inner derivations. 

 

Lemma 4.14. Let δA ∈ E[B(H)], then δA is norm attainable if there exists a 

unit vector x0 ∈ H, A ∈ N A(H) and Ax0, x0 ∈ Wess(A). 

 

Proof. For an operator A ∈ N A(H) we know that an operator is norm-

attainable via essential numerical range from proposition 4.2. Now, we need 

to show that δA ∈ E[B(H)] is norm attainable. By the definition of inner 

derivation, δA = AY0 − Y0A. Since A is norm attainable then there exist a unit 

vector x0 ∈ H such that ∥x0∥ = 1, ∥Ax0∥ = ∥A∥. By orthogonality let y0 satisfy 

y0 {Ax0, x0} and a contractive Y0 be defined as a linear transformation Y0 : x0 

→ x0 with Ax0 → −Ax0 as y0 → 0. Since Y0 is a bounded linear operator on 

H, then by norm attainability ∥Y0x0∥ = ∥Y0∥ = 1 and 
 
 

 

∥AY0x0 − Y0Ax0∥ = ∥Ax0 − (−Ax0)∥ = 2∥A∥. 
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It follows from Lemma 3.1 in [87] that ∥δA∥ = 2∥A∥. By the inner product 

Ax0, x0 = 0 ∈ Wess(A), it follows that ∥δA∥ = 2∥A∥. Therefore, ∥AY0 − Y0A∥ = 

2∥A∥ = ∥δA∥. Hence, δA is norm-attainable.  
 

Lemma 4.15. Let A, A0 ∈ B(H). If there exist unit vectors y and y0 on 
 

H such that A, A0 are norm-attainable then δA,A0 is also norm-attainable. 
 

 

Proof. Given the operators A, A0 ∈ B(H) are norm attainable then we need to 

show that δA,A0 is also norm attainable. We define the generalized derivation 

by δA,A0 (Y ) = AY − Y A0. Since A, A0 are norm-attainable then there exist 

unit vectors y and y0 on H such that ∥y∥ = ∥y0∥ = 1, ∥Ay∥ = ∥A∥ and ∥A0y0∥ = 

∥A0∥. If y and Ay are linearly dependent then we have ∥Ay∥ = ε∥A∥y where |ε| 

= 1 and | Ay, y | = ∥A∥. It follows that | A0y0, y0 | = ∥A0∥ which implies that 

∥A0y0∥ = ϕ∥A0∥y0 and |ϕ| = 1. 
Therefore,  

A0y0 , y0  = ϕ = −  
Ay

 , y = −ε. If Y is defined as Y : y → y0  
∥A0∥ ∥A∥ 

and y0 → 0, ∥Y ∥ = 1 then (AY − Y A0)y0 = ϕ(∥A∥ + ∥A0∥)y0 which implies 

∥AY −Y A0∥ = ∥(AY −Y A0)y0∥ = ∥A∥+ ∥A0∥ = ∥δA,A0 ∥. Hence, δA,A0 is norm-

attainable.  

 

Lemma 4.16. Every inner derivation is norm attainable if and only if it is self 

adjoint. 

 

Proof. Let δA ∈ B(H) be norm-attainable then we show that δA = δA
∗. Now 

since δA ∈ B(H) is norm attainable then there exist a contraction 
 

Y ∈ B(H) such that ∥δAY ∥ = ∥δA∥. That is, ∥δA
∗δAY ∥ = ∥δA

2
Y ∥. Let 

ε 
∈ 

H be defined as ε = δA then ε is contractive such that 
∥ 
δ∗ ε 

∥ 
= 

∥δA∥    A   

∥δA∥ = ∥δA
∗∥. Hence, δA is self-adjoint. Conversely, let δA be self-adjoint. 

Now since δA
∗ is norm-attainable from the first part, then there exists a 
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contractive M ∈ B(H) such that ∥δA
∗M∥ = ∥δA

∗∥, that is ∥δAδA
∗M∥ = 

2 δ∗  
A  

∥δAM∥. Let δ be denoted by δ = ∥δA
∗∥ where ∥δ∥ = 1 such that ∥δAδ∥ = 

∥δA
∗∥ = ∥δA∥. Hence, δA is norm-attainable. 

 
 

Lemma 4.17. Every generalized derivation is norm-attainable if and only if it 

is implemented by orthogonal projections. 

 

Proof. Let A, A0 ∈ B(H) be orthogonal projections. Indeed, to show that a 

generalized derivation is implemented by orthogonal projections A and A0, it 

is enough to show that it is self adjoint if and only if it is normal as proved in 

[44]. Let δA,A0 : B(H) → B(H) be bounded linear operator on B(H). Then 

there exist a unique bounded linear operator δA,A
∗
0 : B(H) → B(H) such that 

δA,A0 X, Y = X, δA,A
∗
0 Y , for all X, Y ∈ B(H). Now, 

 

 

∥δA,A
∗ 

0Y∥ = sup  δA,A0 X, Y 

  ∥X∥=1 

 ≤ sup   ∥δA,A0 ∥∥X∥∥Y ∥ 
  ∥X∥=∥Y ∥=1 

 = 
∥δ

A,A0
∥ 

 

So, we conclude that δA,A
∗
0 is norm attainable. Conversely, let δA,A0 be norm 

attainable. We need to show that it is implemented by orthogonal 

projections. This follows immediately from [44] and this completes the 

proof.  
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4.3 Upper and lower norm estimate for norm- 
 

attainable derivations 
 

 

In this section, we give results on upper and lower norm estimates for norm-

attainable derivations. We consider both inner derivations and gen-eralized 

derivations. We begin with the following proposition. 

 

Proposition 4.18. Let C
′
, D

′
 ∈ N A(H) and δC′,D′ be bounded then ∥δC′,D′∥ ≤ 

∥C
′
∥ + ∥D

′
∥. 

 

Proof. Since δC′,D′ is bounded then for fixed C
′
, D

′
 ∈ N A(H) we have 

∥δC′,D′(X)∥ ≤ ∥C
′
X −XD

′
∥ ≤ ∥C

′
X∥+ ∥XD

′
∥ ≤ ∥C

′
∥∥X∥+ ∥X∥∥D

′
∥. Let X be of 

norm 1 and take supremum over X ∈ N A(H) then ∥δC′,D′ ∥ ≤ ∥C
′
∥ + ∥D

′
∥.  

 

 

Remark 4.19. If C
′
 = D

′
 then ∥δC′ ∥ ≤ 2∥C

′
∥. 

 

 

Next, we consider upper bounds in the unit ball of N A(H) denoted by 

[NA(H)]0. 

 

Lemma 4.20. Let [N A(H)]0 be the unit ball of N A(H) and S be a fixed 

element of N A(H). Let X ∈ [N A(H)]0 then ∥δS|[NA(H)]0 ∥ ≤ 2d(S). 

 

Proof. Since X ∈ [N A(H)]0 has norm 1 then we have ∥δS|[NA(H)]0 (X)∥ = 

∥SX−XS∥[NA(H)]0 = ∥(S−λ)X−X(S−λ)∥[NA(H)]0 ≤ ∥S−λ∥∥X∥[NA(H)]0+ ∥X∥∥S − 

λ∥[NA(H)]0 . Take the supremum over X ∈ [N A(H)]0, we obtain ∥δS|[NA(H)]0 ∥ ≤ 

2∥S − λ∥ and considering the infimum over λ ∈ C we obtain ∥δS|[NA(H)]0 ∥ ≤ 2 

infλ∈C ∥S − λ∥ = 2d(S).  
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Remark 4.21. The restriction of δA|[NA(H)]0 i.e δA to [N A(H)]0 is a bounded 

linear operator. 

 

Next we give an extension of Lemma 4.20 to a generalized derivation in the 

following theorem. 

 

Theorem 4.22. Let S, S0 be fixed elements of N A(H) then 

 

∥δ
S,S0 

|
[NA(H)]0 ∥ 

≤ ∥δS,S0 ∥
. 

 

Proof. Since X ∈ [N A(H)]0 has norm 1 then we have ∥δS,S0 |[NA(H)]0 (X)∥ = 

∥SX − XS0∥. Following proof of lemma 4.20 anologously we have 
 
 

∥δ
S,S0

|
[NA(H)]0

(X)∥ 
≤ ∥S

 
−
 
λ∥∥X∥

[NA(H)]0 
+ ∥X∥∥S

0 
−
 
λ∥

[NA(H)]0

. 

 

Taking the supremum over X ∈ [N A(H)]0 we obtain 
 

∥δS,S0 |[NA(H)]0 ∥ ≤ infλ∈C(∥S − λ∥ + ∥S0 − λ∥) = ∥δS,S0 ∥. 
 
 

Corollary 4.23. Every generalized derivation δS,S0  is norm-bounded. 
 

 

Proof. This follows immediately from [87] and from Theorem 4.22. This 

completes the proof.  

 

Proposition 4.24. Let S, S0 be fixed elements of N A(H) then 

 

∥δ
S,S0

|
[NA(H)]0

∥ 
≥ ∥S∥ 

+ ∥S
0
∥. 

 

Proof. Let ε, ξ and x be unit vectors in H and ϕ, θ be positive linear func-

tionals such that ϕ ⊗ ε : H → C and θ ⊗ ξ : H → C be of rank 1 defined as 

(ϕ⊗ε)x = ϕ(x)ε and (θ⊗ξ)x = θ(x)ξ, ∀ x ∈ H, ∥x∥ = 1. Now we have that ∥(ϕ 

⊗ ε)x∥ = sup{ (ϕ ⊗ ε)x∥, ∥x∥ = 1} = |ϕ(x)| = |ϕ|. Similarly, we 
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have ∥(θ⊗ξ)x∥ = ∥θ∥. Letting S = ϕ⊗ε and S0 = θ⊗ξ then ∥S∥ = ∥ϕ∥ and ∥S0∥ 

= ∥θ∥. Now from Corollary 4.23 we have that every general-ized derivation 

is norm-bounded this implies that ∥δS,S0 |[NA(H)]0 (X)∥ ≥ ∥δS,S0 (X)∥ where X 

∈ [N A(H)]0. Therefore, ∥δS,S0 |[NA(H)]0 ∥
2
 ≥ ∥SX − XS0∥

2
 implying that 

∥δS,S0 |[NA(H)]0 ∥
2
 ≥ [∥S∥ + ∥S0∥]

2
. Taking positive square root on both sides 

we obtain ∥δS,S0 |[NA(H)]0 ∥ = ∥δS,S0 ∥ ≥ ∥S∥ + ∥S0∥.  
 

 

Remark 4.25. If S = S0 then ∥δS,S0 ∥ = ∥δS∥ ≥ 2∥S∥. 

 

Remark 4.26. From Theorem 4.22 and Proposition ?? it is easy to see that 

∥δS,S0 ∥ = ∥S∥ + ∥S0∥ and hence ∥δS∥ = 2∥S∥. 
 

Theorem 4.27. Let S, S0 ∈ N A(H) and α1 ∈ W0(S) and α2 ∈ W0(S0). 
 

Then ∥δS,S0 ∥ ≥ (∥S∥
2
 − |α1|

2
)
1/2

 + (∥S0∥
2
 − |α2|

2
)
1/2

. 

 

Proof. By definition of W0(S) we have xn ∈ H such that ∥Sxn∥ = ∥S∥ and Sxn, 

xn → α1 for α1 ∈ W0(S). This argument follows for W0(S0) and α2 ∈ W0(S0). 

Let Sxn = δnxn + βnyn so S0xn = ζnxn + λnyn where xn, yn = 0, ∥yn∥ = 1. Take 

Unxn = xn and Unyn = −yn for Un = 0 in {xn, yn}. Then ∥SUnxn − UnS0xn∥ = 

∥δn + βn∥ ≤ |δn| + |βn|. But |δn| + |βn| ≥ (∥S∥
2
 − |δn|

2
)
1/2

 − ξn + (∥S0∥
2
 − 

|βn|
2
)
1/2

 − ξn). Since ξn is arbitrary and letting n → ∞, so it follows that 

∥δS,S0 ∥ ≥ ∥(SUn − UnS0)xn∥ = |δn| + |βn| = (∥S∥
2
 − |α1|

2
)
1/2

 + (∥S0∥
2
 − 

|α2|
2
)
1/2

.  
 

Corollary 4.28. Let xn, yn = 0 then 0 ∈ W0(S) and if 0 ∈ W0(S0) then ∥δS,S0∥ ≥ 

∥S∥ + ∥S0∥. 

 

Proof. Follows immediately from definition of W0(S) and the Theorem 4.27. 
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Chapter 5 
 
 

 

CONCLUSION AND 
 

RECOMMENDATIONS 
 
 
 
 
 
 

5.1 Introduction 
 

 

In this chapter, we give the conclusion and recommendations based on the 

objectives of the study and the results obtained on norm-attainability 

conditions, upper norm estimates and lower norm estimates for norm-

attainable derivations in Banach algebras. 

 
 

 

5.2 Conclusion 
 

 

We give the conclusion regarding the problem stated on Section 1.3 of our 

work by highlighting the results obtained in our study . 

 

In objective one, we established norm-attainability conditions and con-

cluded that ∥AY0x0 − Y0Ax0∥ = ∥Ax0 − (−Ax0)∥ = 2∥A∥ = ∥δA∥. 
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In objective two, we determined the upper norm estimates for norm-

attainable derivations and showed that ∥δA,B∥ ≤ ∥A∥ + ∥B∥ and for the lower 

norm estimates for norm-attainable derivations we showed that ∥δS,S0∥ ≥ ∥S∥ 

+ ∥S0∥. 
 

Therefore, we have given results on norm-attainability conditions for 

derivations, the upper and lower norm estimates for norm-attainable 

derivations in Banach algebras. 

 
 

 

5.3 Recommendations 
 

 

In objective one, we have established results on norm-attainability con-

ditions for derivations in Banach algebras. We recommend that further study 

can be done to establish norm-attainability conditions for deriva-tions when 

they are implemented by transaloid operators normaloid op-erators. 

 
 
 

In objective two, we have determined upper and lower norm estimates for 

norm-attainable derivations in Banach algebras. We recommend that further 

studies can be done to determine upper and lower norm estimates for norm-

attainable derivations when they are implemented by transaloid operators 

and normaloid operators. 
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