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ABSTRACT 

Compounds belonging to the 122 iron pnictide have a ThCr2Si2 structure with a space group of 

14/mmm containing divalent alkali earth metal elements. This study applies First Principle 

Calculation to investigate mechanical, electronic and structural phase transition properties. The 

compound has a low value of Vicker hardness an indication that it is not strong enough to resist 

being dented. This property enables them suitable for the use as bake hardeners which provide a 

good formability before stamping and enhance strength post baking. It has low value of Debye 

temperature hence frozen high frequency modes are expected that enhances field amplitude 

which can be very attractive in various applications such as dispersion engineering, lasers and 

delay lines. The compound is metallic. The compound has phase transition from the stable phase 

non-superconducting tetragonal to type I orthorhombic superconducting phase. This plays a big 

role in enhancing conductivity. We are making use of the Quantum Espresso simulation package 

which is a suite for First Principles electronic structure calculations and material modelling 

distributed for free under free software for the General Public License. It has its basis on plane 

wave basis sets, density functional theory, and pseudopotentials both ultrasoft and norm-

conserving. Quantum Espresso runs many calculations with powerful parallel machines, 

workstations and computer systems. These calculations involve ground state calculations, 

structural optimization, electrochemistry and special boundary conditions, response properties, 

spectroscopic properties and Quantum transport. The elastic constants indicate the deformation 

resistance along the axes and planes of the material under study. The band structure which 

represent the allowed electronic energy levels of solid materials, gives information on the 

material's electrical properties. It consists of the valence and conduction bands which overlaps. 

Between the conduction and valence bands the compound has superconducting gaps. The 

superconducting gaps are the energy differences between the valence band's highest points and 

the conduction band's lowest points. At external pressure application of 0.2GPa, the compound 

achieves phase transition and superconductivity emerges due to the reduction of the unit cell 

volume. The projected Density of states gives the number of states per energy range between the 

bands and shows the orbitals responsible for the conductivity. The phase change properties are 

brought about by changes in the conditions which induce desirable characteristics, for instance, 

superconductivity. Our results indicate that the compound is stable mechanically and with 

application of pressure it undergoes phase transition at 0.2GPa. From Density of states 

calculation, increase in energy results to phonon hardening a property which can be studies for 

its good application in integrated circuits. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of Study  

The iron pnictide compounds at stability form crystals at ambient pressure with a tetragonal 

shape at high temperatures. Phase change properties of these compounds are either triggered by 

the application of pressure or chemical doping. The iron pnictides with the extra hole per unit 

cell facilitate Na-doping to stabilize superconductivity. Na-substitution for Ca also induces 

superconductivity near 20K in polycrystalline material with nominal composition 

𝐶𝑎5𝑁𝑎5𝐹𝑒2𝐴𝑠2 which, under pressure their resistivity lacks any sign of superconductivity in the 

first-order phase transition but has a reduction of its unit cell volume. Reduction of its unit cell 

volume and hole doping are essential for phase change properties. Electron doping suppresses 

structural phase transitions and superconductivity is induced. The Non-Magnetic Resonance and 

Nuclear Quadrupole Resonance measurements on the iron pnictides consistently found multiple 

gaps in phase change properties (Kohori, Yamato, Iwamoto, & Kohara, 2000). 

𝐶𝑎𝐹𝑒2𝐴𝑠2 has a tetragonal stable structure with one atom of calcium, two iron and two arsenide 

in the unit cell. At stability does not superconduct but upon excitation and doping it 

superconducts. Study of the compound’s electronic, mechanical and structural transition 

properties is utilize its application on superconduction. 

 The appearances of several structural phases at low temperatures in 𝐶𝑎𝐹𝑒2𝐴𝑠2  are extremely 

sensitive to induced pressure (S. Saha et al., 2012). Also, by inducing internal strain, thermal 

treatment of the crystals at ambient pressure collapsed tetragonal phase is stabilized. Under 

hydrostatic pressure, the compound undergoes a structural transition to a phase of reduced c-axis 

length, which is collapsed tetragonal under low temperatures and registers no signature of 
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conductivity. Applied pressure overrun their phase change properties (Katayama et al., 2012). 

The high-temperature tetragonal state becomes orthorhombic and antiferromagnetically ordered 

as a function of pressure. At a pressure of 0.35GPa and low temperatures, transition takes place 

to a collapsed tetragonal state with a ~10% decrease. 

Understanding phase transition properties of superconducting materials is important because of 

the wide range of applications (Huang, Fan, Singh, & Zheng, 2020). Magnetic levitation is where 

cargo vehicles, for instance trains can be suspended technically on very strong superconducting 

materials eliminating friction between trains and tracks. The superconductors will solve electrical 

energy wastage through heat and also utilizes space as they are smaller in size as compared to 

conventional electromagnets (Buongiorno et al., 2009). 

Health practitioners require a non-invasive way of determining what is happening in human 

bodies. By impacting a strong superconductor-made magnet into the body, hydrogen and fat 

molecules in the body, except energy from a magnetic field, produce energy that can be 

identified and displayed graphically by the computer without carrying out surgery. 

Superconductors are materials that do not resist the flow of current and are the most advanced in 

scientific discovery because they minimizes resistance (Scanlan, Malozemoff, & Larbalestier, 

2004). Electric generators made with superconducting wires are more efficient and smaller as 

compared to conventional generators. These features enable them to be profitable ventures of 

power. They have energy storage that enhances power stability. Superconductor-based 

transformers are used in power utilities and fault limiters. Superconducting fault limiters have the 

ability to respond in very few seconds to limit huge amperes of current usage. 
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 A weak link between two superconductors allows a small current to pass without energy 

dissipation (Silver & Zimmerman, 1967). On increasing current, it enables the junction to switch 

and does the output of single flux quantum whereby the switching is faster as compared to 

semiconductor transistors hence facilitating computing. It was identified in Mercury by Dutch 

physicist Heike Kemerling Onnes of Leiden University. He cooled the temperature of helium to 

4K, and its resistance suddenly disappeared. An advancement came in 1962 when a graduate at 

Cambridge University predicted the flow of current in the two superconductors even when 

separated by a semiconductor (Josephson, 1993). This phenomenon is called Josephson Effect, 

applied to devices like squid that detect even the weakest magnetic field ever. Current iron 

pnictide superconductors have pushed transition temperature to 56K (Bartalesi, 2010) 

(Miyamoto et al., 2017) and they do not take the route of conventional superconductors. 

Operation of high Tc cuprates increased the tendency on pairing, raising superconducting 

transition temperature in terms of phonon coupling. 

Superconductivity appears at a transition temperature Tc=9.8K and 8.7K on doping group 10 

elements such as Pd and Ni in 𝑆𝑟𝐹𝑒2𝐴𝑠2. In this material, resistivity exhibits metallic behavior 

and decreases below 17K, that is; resistivity is noticed at 15.6K(S. R. Saha, Butch, Kirshenbaum, 

& Paglione, 2010) (Meier, 2018), indicating superconducting transition at 𝑇𝑐 = 17𝐾. 𝑆𝑟𝐹𝑒2𝐴𝑠2 

parent compound exhibits structural and long-range magnetic ordering phase transition at 

𝑇𝑜 = 198 𝑡𝑜 220𝐾 as a resistive anomaly. Resistivity exhibits no anomaly beyond 𝑇𝑐 clearly 

shows that structural and magnetic ordering transition gets completely suppressed by Platinum 

substitution and superconductivity appears on the tetragonal phase in 𝑆𝑟𝐹𝑒2𝐴𝑠2 which is a 

contrast. 
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The iron pnictides have chemical packing that is not complicated and their structures do not 

differ so much in the alignment (Taylor 1971). They have a phase which ranges from 

paramagnetic to antiferromagnetic , transiting from tetragonal to orthorhombic. (Ran et al., 2011) 

Change of the order parameter within different spin fluctuation sheets with multi gaps is 

responsible for superconductivity in the iron pnictides. 

The Point Contact Andreev Reflection spectra have Point Contacts current in the Z-dependent ab 

plane on single crystals (Senkpiel et al., 2022), which greatly improves conductance in iron 

pnictides. First, it enhances conductance less than 20mV at around 10mV and secondly, below 

~5mV-7mV. At around zero bias, conductivity is enhanced in the ab direction. 

Iron pnictides are powerful magnets and when magnetism is removed through doping, 

superconductivity is enhanced. Superconductivity is facilitated in all iron-based superconductors 

by the application of pressure (Biswal & Mohanta, 2021). Iron pnictides possess superconducting 

symmetry and their pairing is out of spin fluctuations (Yin, Haule, & Kotliar, 2014). 

Increases in the number of Fe-d bands close to the Fermi level by multiband effects enhance 

superconductivity. Forces of attraction and repulsion of multiband interactions improve 

superconductivity with both positive and negative band gaps. 

The development of a coherent macroscopic quantum state of electrons facilitates 

superconductivity in metals. Superconducting transition temperatures of iron pnictides are high. 

When electrons move in unison conducting with no resistive loss of energy, we say 

superconductivity has been developed fully. Superconductivity rises as a result of an 

unconventional pairing mechanism between electrons due to coulomb interaction between 

electron-electron pairs called Cooper pairs which occurs at very low temperatures. Bad metal 
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properties at normal state and superconductivity occurring near antiferromagnetism order are the 

main features which facilitate superconductivity in FeSCs as opposed to conventional electron-

phonon coupling and effectively, electron-electron pairs attractive forces are yielded as electrons 

avoid coulomb repulsion. 

Quantum critical point appears at the border of the antiferromagnetism order (Hosoi et al., 2016), 

which affects the structure of the superconducting pairing greatly. Fe ions make a square lattice 

with As atoms below or above the center of the lattice (Chang et al., 2019). 111 iron pnictide 

group of materials comprise of three layers with LaO layers in between separating the layers. F-

doping of the 111 iron pnictide family facilitates a transition temperature of 56K. In the 122 iron 

pnictide group for instance, 𝐵𝑎𝐹𝑒2𝐴𝑠2, each unit cell has two layers of FeAs with Ba ions in 

their midst separating them. Chemical substitution here gives rise to superconductivity with 38K 

maximum transition temperature attained. 

𝐵𝑎𝐹𝑒2𝐴𝑠2 is metallic, which develops antiferromagnetism order at Neel temperature (𝑇𝑁) of 

140K (Y. Wang, Lv, Zhu, & Ma, 2012). Iron based compounds above TN are paramagnetic of 

which a good number are clear, enabling observation of quantum oscillations at low 

temperatures. They contain large sizes of electrical resistivity at room temperature an indication 

of bad metal. The bad metal properties indicate strong electron-electron correlation and put iron 

pnictides in the proximity of Mott localization. 

This study is based on quantum mechanical theory under Density Functional Theory by 

considering the atomic simulation technique in the computation of the possible properties of the 

compound. 
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1.2 Statement of Research problem 

Superconductivity has not been achieved in this compound by only pressure application as the 

only external condition. This study aims at the application of only pressure as the only physical 

condition and achieve structural phase transition with the emergence of superconductivity 

properties between external pressures of 0.1GPa and 0.3GPa. Superconductivity can be achieved 

upon conditions of temperature but our computational studies at CHPC works under room 

temperature and only pressure is varied. 

Among the researched superconductors, a good number are type I superconductors. These are 

superconductors which lose superconductivity simply when placed in magnetic fields hence 

limiting their applications. CaFe2As2 compound is a type II superconductor whose 

superconductivity is not lost easily. They are known as hard superconductors and are applicable 

in many areas even in the strong magnetic fields.  

1.3 Justification for the Study 

Iron pnictides are essential in modern life in several ways, which necessitate research of their 

properties in the improvement of their wide range of applications. Superconducting wires made 

of iron pnictides are effective in the transmission of power as they have the least resistance. 

Electric generators made up of these wires are more efficient and smaller in size hence portable 

and manageable for the interest of space. They store energy and stabilize power supply. 

Superconductor-based transformers are used in power utilities and fault limiters, giving quick 

responses to avoid current wastage. In medicine determination of internal conditions of the body 

has been boasted by the use of superconductor-made magnets, which sends signals to the 

computers, making surgery unnecessary. Magnetic fields produce energy that can be identified 

and displayed graphically by the computer without carrying out surgery. 
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1.4 Objectives 

 

 1.41 Main Objectives 

To apply ab-initio calculations in the study of the electronic, mechanical and phase change 

properties of iron pnictide compound 𝐶𝑎𝐹𝑒2𝐴𝑠2. 

1.42 Specific Objectives 

To investigate the effect of pressure between 0.1GPa and 0.3GPa. 

i. On mechanical properties of 𝐶𝑎𝐹𝑒2𝐴𝑠2. 

ii. On electronic structure properties of 𝐶𝑎𝐹𝑒2𝐴𝑠2. 

iii. On phase change properties of 𝐶𝑎𝐹𝑒2𝐴𝑠2. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter gives a good summary of the literature review with a clear statement of the study 

gap and how this study intends to fill the gap.  

2.2 Focus of Study 

This research is focused on the computational simulation of materials with a specific interest in 

understanding mechanisms that control the chemical reactivity of nanostructured and 

nanoparticles in relationship to electronic structure properties. This field raises questions 

concerning the nature of bonding between molecules and atoms in regions of complex local 

environments and low symmetry. We shall bring understanding on how the bonding is affected 

by microscopic geometry, electronic structure, primary characteristics of molecules and atoms 

comprising various systems and atomic coordination. In view of this, we develop a framework 

for many-body modelling of materials whereby we bring to a comprehensive understanding at 

the atomic scale the properties of this material which provides physical insights and input 

parameters for further study (Richards et al., 2008).  Material modeling studies have predictive 

powers which are considerable and are expected to provide the knowledge basis necessary for 

tailoring functional materials by design (Hufenbach et al., 2011). This fundamental 

comprehension of the chemical and physical characteristics at interfaces and surfaces forms the 

primary basis of computational research and development (Shi et al., 2015). The computational 

approaches, including molecular dynamics with density functional theory and empirical 

potentials for instance, describe the coupled transport of heat and matter in liquids and solids in a 

cost-effective manner (Caro & Victoria, 1989).  
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Experimentalists use computational experimentation in testing the effect of various parameters; 

since certain conditions are difficult to control in a laboratory. It is also noted that the experiment 

would be so expensive if it is to be done repetitively for many sets of parameters. For instance, 

Thomas Edison in inventing the first commercially viable electric light bulb, he tested thousands 

of materials to use for filament that would last long enough (David, 1991). This traditional 

process of trial and error of material discovery is the primary reason why we design very many 

materials by simulation more than 150 years later. Researchers can now avoid these many 

expensive dead ends, which slowed down Edison through a method known as materials by 

design. The material project launched in the year 2011, which is a Department of Energy 

program having a basis in Lawrence Berkeley national laboratory, plays a significant role in this 

evolution with a giant searchable repository of data available to the whole material science 

community. The use of computational material science that integrates quantum mechanics, 

supercomputers and advanced mathematics enables researchers to simulate thousands of 

compounds each day in search of the best candidates to give a test in the laboratory. They utilize 

a growing database of about 80,000 inorganic compounds in the selection of the existing 

materials and the creation of novel combinations for some given applications. Computational 

material science is far much efficient because material challenges underpin everything we do in 

science, engineering and technology. Computational work addresses questions on how to design 

materials that are stronger, lighter, cheaper to produce, less energy consuming and easier to make 

in the production process. Their applications have a very wide range of usage from battery 

material for the best next generation of cars to the replacement of the lead-based materials 

commonly used in gas stove lighters. In computational experimentations, scientists can explore 

both vertical and horizontal aspects in terms of properties interested in for specific materials. 
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There are countless and infinite numbers of combinations of atoms which can be computed until 

no more computational time is left. In order to accommodate a stream of material project 

calculations, scientists tap into a variety of supercomputing resources. Most of the material 

project work is about known materials, which give insights into the new materials. For instance, 

diamond is a material that is formed naturally at absolute pressures and temperatures deep down 

in the earth's mantle and is made use of in deriving parameters. Its qualities can be measured, for 

example, its hardness in association with its physical structure. From this beginning, it forms a 

basis for seeking other materials with similar structures which can be synthesized with a lot of 

ease. An example of a related material is silicon carbide, an important material used in braking 

systems due to its ability to withstand high temperatures. Silicon is much easier to make because 

it is just derived chemically not by physical parameters of pressure and temperature to create it. 

Iron pnictides are iron-containing compounds and materials whose superconducting properties 

were revealed, which led to the discovery of iron pnictides, formerly known as oxypnictides. 

Later a sub-group of iron-based superconductors known as 122 iron arsenides with similar 

properties as the oxynitrides attracted attention because of their simple composition (Chiang, 

Dzyuba, Shevchenko, & Vasiliev, 2012). 

2.3 Pnictides 

These 122 iron pnictide compounds have a 𝑇ℎ𝐶𝑟2𝑆𝑖2 structure with a space group of 14/mmm 

containing divalent alkali earth metal elements. It has been demonstrated in the recent past that 

trivalent La and monovalent Na can be combined, substituting the divalent ions successfully to 

form 122-type of superconductors with a 122-type of structure (Kawashima et al., 2018). 
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These compounds form crystals at ambient pressure with a tetragonal shape at high temperatures. 

Phase change properties of these compounds are either triggered by the application of pressure or 

chemical doping. The iron pnictides with the extra hole per unit cell facilitate Na-doping to 

stabilize superconductivity. Na-substitution for Ca also induces superconductivity near 20K in 

polycrystalline material with nominal composition 𝐶𝑎5𝑁𝑎5𝐹𝑒2𝑃2 which, under pressure, lacks 

any resistivity sign in the first-order phase transition but has a reduction of its unit cell volume. 

Reduction of its unit cell volumes and hole doping are essential for phase change properties. 

Electron doping suppresses structural phase transitions and induces superconductivity. 122 class 

of pnictide has an atomic arrangement of 𝐴𝐹𝑒2𝐴𝑠2 with (A=Ba, Ca, Sr and Eu) atoms. 

𝐶𝑎𝐹𝑒2𝐴𝑠2 becomes a superconducting compound under pressure of 0.69 GPa, with a transition 

temperature 𝑇𝑐 that exceeds 10 K (Chu & Lorenz, 2009). Single crystals of CaFe2As2 were 

synthesized and it was discovered that they possess first-order transition at a temperature of 170 

K accompanied by structural and magnetic transition. Its superconductivity emerges upon 

chemical substitution (Sun et al., 2012). CaFe2As2 upon application of external pressure phase 

transition is suppressed by 0.35GPa and substituted by a first-order phase transition to a 

collapsed tetragonal that is magnetic at low temperatures. Further application of pressure to the 

compound marks the second transition with transition temperature crossing room temperature by 

1.7 GPa (Canfield et al., 2009). In all these researches that have been done, superconductivity of 

𝐶𝑎𝐹𝑒2𝐴𝑠2 has been achieved at relatively high pressures and temperature conditions which are 

expensive conditions to establish. Our research is geared towards achieving this important 

property in 𝐶𝑎𝐹𝑒2𝐴𝑠2 at relatively low and manageable pressure and at room temperature.  

There is a serious need for magnetic resonance imaging techniques that require computer-

generated radio waves and magnetic fields that will give well-detailed conditions of the body 
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tissues and organs to help diagnose the problem for specific and appropriate treatment. 

Electricity is used in the generation of these powerful magnetic fields but essentially requires 

superconducting wires of high magnetic tolerance. 

New electricity generation, storage and delivery modes must be enhanced to meet the fast-

growing global energy demand. Energy corporations will benefit from these innovations by 

using superconducting wires to avoid energy wastage and equally meet the high manufacturing 

costs. The metallic property of the iron pnictide compounds with less fragility allows molding 

them easily into long required wires in large quantities for devices like offshore wind turbines 

which grants an easy technology integration.  

The modern improved superconducting generators have motors with minimized resistance to 

zero unlike the copper motors that have electrical resistance for enhanced efficiency. 

Superconducting generators provide reactive and faster power support, they are light and small in 

size hence portable with efficiency in power supply. 

Superconductors have applications on cell phone base stations and powering coil guns, rail guns, 

improved fast digital circuits and particle detection. Superconductors are also required in 

instances of strong electric currents to protect equipment from melting. Superconductors also 

play an important role in allowing phones to operate with better reception and with very minimal 

power loss (Simon, Hammond, Berkowitz, & Willemsen, 2004). 
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CHAPTER THREE 

THEORETICAL METHODS 

3.1 Density Functional Theory 

Density Functional theory is a quantum mechanical theory that takes consideration of the atomic 

simulation approach in the computation of a wide array of properties of all types of atomic 

systems that include; molecules, surfaces, crystals and electronic devices with their combination 

with non-equilibrium Green's functions. This theory has a basis in the electron density 

distribution as opposed to many-electron wave functions. It is used by both chemists and 

physicists in the conclusive calculation of the electronic structure of molecules, atoms and solids. 

Its applications had developed over time till in 1990 when its improvements were accepted in 

quantum chemical application after they were proved accurate, which resulted in an upsurge in 

applications. The Density Functional Theory is advantageous as it has a favorable performance 

ratio compared with other methods based on electron-correlated wave functions, coupled cluster 

and perturbation theory. This has led to the study of larger molecular systems with satisfactory 

accuracy hence enhancing the power to make predictions essential in electronic structure theory. 

The 1998 Nobel Prize that was awarded to Walter Kohn for his efforts in the development of the 

Density Functional Theory which is enough evidence that DFT is the most worldwide used 

electronic structure method of huge importance in physics and chemistry. 

The molecular dynamics methods that have a basis on DFT for instance, the Born Oppenheimer 

and Car-Parrinello molecular dynamics have gained great fame in the recent past and are 

employed in many areas of physics, chemistry and bio molecular sciences. Classical molecular 

dynamics simulations that are fully based on less expensive force fields have been the areas of 

strength for bio molecular sciences. Variants based on DFT are more beneficial in studying 
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chemical reactions from First Principles as they have higher powers in making predictions than 

bespoke force fields. Molecular dynamics simulation based on DFT give room for reasonable 

characterization of chemical processes and molecular systems with a conclusive description of 

dynamical affinity at some given conditions of temperature. This has enhanced ab initio 

molecular dynamic investigations in more complex and larger condensed-phase molecular 

systems.  

Hybrid methods have been developed to give descriptions of the central part of large systems by 

the use of quantum chemical methods, while classical molecular mechanics methods for 

instance, quantum mechanics provide a description of the surroundings. Quantum mechanical 

methods together with Density Functional theory are essential in the computation of physical 

parameters, which have direct links to the experiments. Theories and experiments team up and 

complement each other successfully not only in the obvious quantities but also in structures, 

energies and spectroscopic properties which are such crucial aspects of computation. 

Experimental spectra are interpreted by the electronic structure theory in many cases and are 

very necessary. Computational calculations of electron paramagnetic resonance and nuclear 

magnetic resonance using the First Principles and electron excitation in organic molecular 

systems is another study field greatly boosted by its important applications in photochemistry 

(Conti, Cerullo, Nenov, & Garavelli, 2020). The conventions advance on conventional Density 

Functional theory enabling calculations on the excited state properties beyond the recorded 

success of the conventional DFT in the analysis of the ground state properties. Currently, the 

popularity of the time-dependent density functional theory has improved the effective 

calculations of the excited states. Proper improvements on Born Oppenheimer approximation are 
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necessary to cater for the cases where the decoupling between electronic and nuclear motions 

does not hold. 

These achievements have impacted much in the Density Functional theory in the study of 

biology, chemistry and physics. The effectiveness of the DFT has led to the treatment of more 

realistic systems allowing electronic structure theory to do more predictions which has expanded 

its potential for applications. This progress is so much improved by the continuous advancement 

in computer performance. Because of these tremendous achievements made, the joint 

computational and experimental results have been achieved more than 10 or 20 years ago.  

Density Functional Theory focuses on electron density which is the number of electrons per unit 

cell volume on a specific point given by; 

𝜌(𝑟) = ∑ (∅𝑖)(r)2
𝑖         3.1 

∅𝑖are the Kohn Sham orbitals of electrons which do not interact. 

The total number of electrons is determined by the equation below; 

∫ ρ(r)dr = n         3.2 

𝑛 is the total number of electrons. 

A greater part of these studies is based on the DFT method, which has made it a more 

fashionable method of quantum mechanics presently. Thought provokingly approximate and 

uncomplicated versions of Density Functional theory for instance, the Density Functional Tight 

Bind (DFTB) method that is based on a second-order expansion of the DFT total energy have 

been developed simultaneously (Yang, Yu, York, Cui, & Elstner, 2007). By these empirical 
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methods that have a basis on DFT groundwork, the researcher has fast access to researching 

many systems in time scale and size in molecular dynamics simulations. The new advancement 

on the DFT directly benefits the Density Functional Tight Bind as it is built on the DFT. 

Quantum states of a system of N electrons deal with 3N Cartesian coordinates in many body 

wave functions 𝜑(𝑟1 … … . . 𝑟𝑁) hence solving it is a challenge. The approximations that will be 

discussed later in the methodology simplify the equation and makes it easy to be worked upon  

(Zhang & Deng, 1993). 

DFT enables us to link single wave functions with many body wave functions, get to know the 

equations satisfied by the wave functions and steps in the determination of the total energy of the 

system in the following manner. 

𝐸 =< 𝜑|𝐻|𝜑 >= ∫ 𝑑𝑟1 … … … . 𝑑𝑟𝑁𝜑∗(𝑟1 … … … … . 𝑟𝑁)𝐻^𝜑(𝑟1 … … … … 𝑟𝑚) 

           3.3 

The Hamiltonian above is given by; 

𝐻^(𝑟1 … … … … . 𝑟𝑁) = ∑
𝛻𝑖

2

2
+ ∑ 𝑉𝑛(𝑟𝑖) +

1

2
∑

1

|𝑟𝑖−𝑟𝑗|𝑖≠𝑗𝑖𝑖    3.4 

𝐸 is a functional of 𝜑,    𝐸 = 𝐹[𝑛] 

A function takes an input function which returns a number as the output. The ground state energy 

which is the lowest possible energy of the system is a function of electron density only;  

 𝐸 = 𝐹(𝑛) 

𝑛(𝑟) → 𝐸𝑒 = 𝐹[𝑛(𝑟)]         3.5 

𝜑(𝑟1 … … … … . 𝑟𝑁) → 𝐸  𝐸 = 𝐹[𝜑(𝑟1 … … … … . 𝑟𝑁)]     3.6 
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The Hohenberg-Kohn theorem state that the total energy of many-electron system is a functional 

of electron density (Kristyan, 2008). The following ways justifies this statement. 

i. In the ground state, the external potential of nuclei 𝑣𝑛 is determined uniquely by the 

electron density. 

ii. The external potential 𝑣𝑛 determines the many electron wave function in any quantum 

state; 𝑣𝑛 → 𝜑. 

iii. The total energy is a function of the many body wave functions in any quantum state. 

iv. In keen and close consideration of the justifications, we conclude that in the ground state 

the total energy is determined by the density.       

  𝑛 → 𝑣𝑛 → 𝜑 → 𝐸 

𝐸 = 𝐹[𝑛] 

T = − ∑
1

2
𝛻𝑖

2W =
1

2
∑

1

𝑟𝑖−𝑟𝑗∨𝑖≠𝑗𝑖       3.7 

Hence total energy is: 

𝐸 = ⟨𝜑 ∑ 𝑉𝑛(𝑟𝑖) ∨ 𝜑𝐼 ⟩ + ⟨𝜑 ∨ T + W ∨ 𝜑⟩                3.8 

The solution to the following Kohn Sham equations will help us in the calculation of the total 

energy with a lot of ease; 

[−
1

2
𝛻2 + 𝑉𝑡𝑜𝑡(𝑟)] ∅𝑖(𝑟) = 𝜀𝑖∅𝑖(𝑟)      3.9    

𝑉𝑡𝑜𝑡(𝑟) = 𝑉𝑛(𝑟)+𝑉𝐻(𝑟) + 𝑉𝑋𝑐(𝑟)     3.10 

𝑉𝑛(𝑟) = − ∑
𝑍𝐼

|𝑟−𝑅𝐼|𝐼         3.11 
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𝛻2𝑉𝐻(𝑟) = −4𝜋𝑛(𝑟)        3.12 

𝑉𝑋𝑐(𝑟) =
𝛿𝐸𝑥𝑐[𝑛]

𝛿𝑛
(𝑟)         3.13 

𝑛(𝑟) = ∑ |∅𝑖(𝑟)|2
𝑖         3.14 

Equation 3.9 is the standard single particle Schrӧdinger equation which is solved as a single 

eigenvalue problem.  To determine eigenvalues 𝜀𝑖 and the eigen functions ∅𝑖, there is a need to 

first know the sum total potential 𝑉𝑡𝑜𝑡(𝑟) = 𝑉𝑛(𝑟)+𝑉𝐻(𝑟) + 𝑉𝑋𝑐(𝑟). The only challenge at this 

level is that  𝑉𝑋𝑐(𝑟) and 𝑉𝐻(𝑟) depends on the electron density 𝑛 and the electron density 

depends on the unknown eigen functions ∅𝑖 through eqn 3.14. This means that each solution ∅𝑖 

is dependent entirely on all other solutions ∅𝑖 hence linked with each other in eqn 3.9- eqn 3.14 

which implies that all must be solved self-consistently. 

 Self-consistency in this case means, if we insert ∅𝑖 solution in the 𝑛(𝑟) = ∑ |∅𝑖(𝑟)|2
𝑖  equation 

and calculate the density, determine the corresponding potential 𝑉𝑡𝑜𝑡 by 

𝑉𝑡𝑜𝑡(𝑟) = 𝑉𝑛(𝑟)+𝑉𝐻(𝑟) + 𝑉𝑋𝑐(𝑟) and proceed in the calculation of the Schrӧdinger Equation, 

then we get a solution  ∅𝑖 which we had begun with at that point we would have achieved self-

consistency. 

The practical procedure to find the solution of the Kohn Sham equations, eqn 3.9- eqn 3.14 is by 

specifying the nuclear coordinates in the calculation of the nuclear potential 𝑉𝑛(𝑟) beginning 

with eqn 3.11. Essentially this information is made available in the crystallography data. 

In particular, the beginning point is by trying to give solution to eqn 3.9 by the use of  𝑉𝑛(𝑟) as 

the first approximation which is more convenient in giving a ‘guess’ of the possible electron 

density 𝑛(𝑟) for the determination of the preliminary approximation of the Hartree exchange 
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correlation potentials. We will make our initial guess for the electron density by the summation 

of the densities that correspond to totally isolated atoms but maintaining the arrangement of the 

atomic positions as per the material under study. 

We make use of the density in obtaining the initial estimates of the Hartree exchange correlation 

potentials    𝑉𝐻 + 𝑉𝑋𝑐 and then 𝑉𝑡𝑜𝑡.  

We proceed in the solution of the numerical Kohn-Sham equations (Aichinger & Krotscheck, 

2005). Solving Kohn-Sham equations gives rise to new wave functions which in turn, we make 

use of in the construction of new estimates of the total potential and density n. This procedure is 

repeated to a point where the new density matches with the old density within some given 

desired tolerance, the point where self-consistency is achieved. The process is illustrated as 

shown below: 
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Schematic flow chart that is used to find self-consistent solutions for the Kohn-Sham equations. 
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3.2 Methodology 

This part contains a description of the different methods adopted in the quest to address the 

research question and in the achievement of the research objectives. This study makes use of 

QUANTUM ESPRESSO, which is an integrated suite of the open source computer coding used 

for quantum simulation of material projects by the use of state-of-the-art electronic structure 

approaches which have a strong basis on density functional theory, many-body perturbation 

theories and density functional perturbation theory (Marini, Poncé, & Gonze, 2015) under 

projector augmented wave and plane wave pseudo potential techniques (Kresse & Joubert, 

1999). QUANTUM ESPRESSO has grown its popularity in the processes and  it is possible to 

study a wide variety of properties of materials through simulation (Giannozzi et al., 2017). The 

high performance of QUANTUM ESPRESSO is on an increasingly emerging broad package of 

hardware architectures and a great community of research which relies on its abilities of the 

fundamental open source platform development and implementation of the upcoming ideas. 

Numerical simulations of density functional theory have become popular and powerful tool used  

in studying material properties . Many such simulations are based on plane wave pseudopotential 

methods that use the projector augmented wave method (PAW) or often use Ultra soft pseudo 

potential . QUANTUM ESPRESSO is highly anchored on modularity, openness, innovation and 

efficiency   (Hussain, Shah et al; 2022). Its distribution is based on two important effective 

packages, CP and PWscf which perform molecular dynamics calculations and self-consistent 

calculations respectively (Goldsmith, Andrade et al; 2021) plus the other many additional 

packages that are used in the more advanced calculations (Ganose, Jackson et al; 2018, Hung, 

Nugraha et al. 2022) including;  Phonon, PostProc. Atomic, XSpectra, GiPAW, turboTDDFT, 

turboEELS, QE-GiPAW, GiPAW, EPW, Sternheimer GW, GWL, Thermo_PW , Thermal2, d3q.  
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3.3 Calculation Procedure 

The experiments began with self-consistent field calculations, which involved the selection of 

approximate Hamiltonian that led to the solution of the Schrӧdinger equation in obtaining a more 

accurate set of orbitals and repeated the solution of the Schrӧdinger equation with the obtained 

new orbitals until the results converged. This determined energy of its many-body system in the 

stationary state and centrally aimed at identifying the lowest energy arrangement of the 

individual atoms. We performed non-self-consistent field calculations immediately after self-

consistent, which enabled the sampling of the system to a denser space allowing subsequent 

calculations such as crystal structure, mechanical properties, band structure, density of states and 

projected density of states. This research was based on the application of external pressure in 

determining properties that include elastic constants calculation which gave the measure of the 

proportionality between stress and strain in the crystal brought about by the application of 

pressure. The performed density of states and projected density of states calculations described 

the number of modes for each single frequency range and computed information about the 

different contributions of the different orbitals, respectively. 

The first principle calculation study of CaFe2As2 under induced pressure was undertaken in the 

framework of density functional theory (DFT) based on plane wave self-consistent field (PWscf) 

and ultra-soft pseudopotential (USPP) method as treated in the Perdew-Burke Ernzerhof (PBE) 

(Idrissi, Labrim et al; 2021) generalized gradient approximation and local density approximation. 

The computational calculations were performed using Quantum Espresso simulation package 

and the optimized cell dimensions were fitted using Murnaghan fitting methodology (Jin et al., 

2022)  given as; 
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𝑃 = 1.5𝐵𝑜 [
V

𝑉

7

3 − (
𝑉𝑜

𝑉
)

5

3
] [1 + 0.75(𝐵𝑜

′ − 4) ({
𝑉𝑜

𝑉
}

2

3
− 1)]                3.15 

             𝐵𝑜-Initial Bulk modulus 

𝐵𝑜
′ - delivative of bulk modulus 

𝑉𝑜-initial volume 

𝑣-final volume 

The k points, and the kinetic energy cut-off values were properly checked through graphing and 

accurate values were obtained for the convergence of the ground state energy at minimum 

convergence threshold in the calculation using the proper basis sets (Halkier et al., 1998). The 

minimization is given by the relation in eqn. 3.16; 

𝐸(𝑉) = 𝐸𝑜 +
9𝑉𝑜𝐵𝑜

16
{[(

𝑉𝑜

𝑉
)

2

3
− 1]

3

𝐵𝑜
′ + [(

𝑉𝑜

𝑉
)

2

3
− 1]

2

[6 − 4 (
𝑉𝑜

𝑉
)

2

3
]}      3.16 

𝐸𝑜- initial energy 

𝐸𝑜, 𝐵𝑜
′  and 𝐵𝑜 are the minimum energy, the derivative of bulk modulus and the bulk modulus for 

pressure. 

The optimization was achieved by considering the volume at minimum energy in the pressure-

volume graph and energy-volume graph using the Birch Murnaghan equation fitting of second 

order (Levämäki, Tian, Vitos, & Ropo, 2019). The valence configuration used for CaFe2As2 was 

3s
2
3p

6
4s

2
 for Ca, 3s

2
4s

2
3p

6
 for Fe and 4s

2
4p

3
 for As. The convergence threshold was estimated at 

10
-8

 eV which is sound for accuracy.  The Brillouin sampling was based on the Monkhost 
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scheme (da Jornada, Qiu, & Louie, 2017). The K-point mesh of the irreducible high symmetry 

points in the Brillouin zone used was 6 x 6 x 4. For the elastic constant calculation, the ‘quasi-

static’ approximation was used, where the elastic constants were computed at absolute 

temperature and saved as elastic constants. 

3.31 Mechanical Properties Calculation 

Mechanical properties play significant role in the crystal structure studies. Empirically, 

mechanical properties of materials are determined by elastic properties which include the shear 

modulus (G), bulk modulus (B), Young modulus (E), and Poisson’s ratio (n). 

Specifically, elastic properties are achieved by the elastic constants (Cij), which are identified as 

the stress tensor versus small strain. Additionally, the mechanical stability of materials is 

calculated by elastic constants. For cubic crystal structure, there exist three independent elastic 

constants; C11, C12, and C44, which determine the mechanical stability given by Borh’s stability 

criteria; 

𝐶11 > 0, 𝐶44 > 0, 𝐶11 > 𝐶12 C11+ 𝐶12 > 0             3.17 

In a tetragonal stable crystal structure, there are six elastic constants; C11, C12, C13, C33, C44, and 

C66. Mechanical stability of this structure is evaluated by; 

C11>0, C33>0, C44>0, C66>0, 

C11-C12>0, C11+C33-2C13>0, 

2(C11+C12)+C33+4C13>0.       3.18 

State of mechanical stability for tetragonal structure can be well evaluated by Borh-Huang 

criteria (Voigt 1928) in eqn. 3.18;  
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Cii > 0 (i=1, 3, 4, 6) 

C11 + C33 - 2C13 >0 

2(C11+C12) + C33 + 4C13 > 0        3.19 

C11 - C12 >0 

Taking into account the structural symmetry, the shear and bulk moduli are evaluated in 

compliance with Voigt-Reuss-Hill (VRH) approximation. Additionally, Young’s modulus is 

identified to be the ratio of linear strain versus linear stress, which gives the degree of elastic 

stiffness. Poisson’s ratio indicates the advances of the covalent bond. A high ratio proves the 

presence of ionic and metallic bonds. Values of Cij can be used in the evaluation of Poisson’s 

ratio and elastic moduli of CaFe2As2. As per Voigt approximation, the bulk modulus together 

with the shear modulus isotropy can be acquired by doing linear combination of elastic constants 

(Panda & Chandran, 2006). With a different format, Reuss obtained estimates for bulk modulus 

and shear modulus isotropy by employing the use of elastic constants for a single crystal (Panda 

& Chandran, 2006). Hill confirmed that Voigt and Reuss estimates were lower and upper 

polycrystalline elastic moduli limits respectively, hence the averages became realistic as shown 

in Eqn. 3.20.  

𝐵 =
𝐵𝑉 + 𝐵𝑅

2
 

𝐺 =
𝐺𝑉+𝐺𝑅

2
                        3.20 

𝐵𝑉 − 𝑏𝑢𝑙𝑘 − 𝑣𝑜𝑖𝑔𝑡 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 

𝐵𝑟 − 𝑏𝑢𝑙𝑘 𝑟𝑒𝑢𝑠𝑠 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 
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The elastic anisotropy of a material’s crystal is the material’s orientation dependent on the elastic 

moduli (Sakurada, Nukushina, & Ito, 1962). A well description of the crystal’s elastic anisotropy 

plays an important role in solid state physics as well as the engineering science area. The term 

anisotropy is used in the description of the direct dependent properties of materials. For instance 

magnetic anisotropy which may occur in plasma which enables the magnetic field oriented in a 

desired direction (Schekochihin, Cowley et al; 2005). Directional filamentation is shown by 

plasmas in lighting and plasma globe. Many materials are optically anisotropic which the 

anisotropy of light is. To determine the quantity of the elastic anisotropy of the material in the 

tetragonal structure, there is need to evaluate the Zener anisotropic factor given by A =

2 C44 (C11 − C12)⁄   (Dragomir & Ungár, 2002). 

For the completely isotropic materials A=1 while for the anisotropic material value of A is either 

smaller or greater than one. Another parameter for anisotropy for tetragonal materials is given by 

the ratio between coefficients of linear compressibility along the a and c axis 𝐾𝑐/𝐾𝑎 (Bridgman, 

1964). For isotropic crystals the compressibility on both directions is the same and the value is a 

unit while a less or greater value the unit indicates that compressibility along a axis is either 

larger or smaller than c axis. 

In determining whether the material is isotropic, the relationship below was used; 

𝐴𝑈 =
5𝐺𝑉

𝐺𝑅
+

𝐵𝑉

𝐵𝑅
− 6                                                   3.21 

Whereby if 𝐴𝑈=0 the material would be regarded as isotropic. As shall be shown, our 

calculations indicate that the material is anisotropic with a value of 0.1807, which is in 

agreement with the studies of the parent compound 𝑇ℎ𝐶𝑟2𝑆𝑖2 (Siggelkow, Hlukhyy, & Fässler, 

2010). 
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Pressure, which is the main basis for phase transition, was calculated for a good range of volume 

by the relationship eqn. 3.22; 

𝐻(𝑃) = 𝑈(𝑉[𝑃]) + 𝑃𝑉       3.22 

Structural transition is associated with the atomic packing and orientation in the crystal, which 

brings about the change of the related properties of the compound. This change is due to 

different conditions, for instance, temperature and pressure. Given that our calculations are done 

at ground state temperature, only the pressure is varied in these calculations. 

Superconductivity of this material which is the main focus of this study appears at structural 

phase transition point brought about by the application of external pressure. Optimization of the 

cut-off energy convergence was achieved at 45 Ry with k-point mesh of 6x6x4.  

There exist three axes in the tetragonal crystalline structure with a different length of the central 

axis either shorter or longer than the other two (Mazzi, Galli, & Gottardi, 1976). The remaining 

two axes have the same lengths and lies in the same plane. A material with a tetragonal system 

has a body centered tetragonal cells and their Bravais lattice is given in such a way that a and b 

are equal but not equal to c and 𝛼, 𝛽 and 𝛾 are all equal to 90 degrees. 

3.32 Many-body Schrӧdinger Equation 

In the effort of understanding the behavior of quantum particles there is an essence to determine 

the corresponding wave function 𝜑(𝑟) for each point 𝑟 = 𝑥𝑈𝑥 + 𝑦𝑈𝑦 + 𝑧𝑈𝑧 in a point of interest 

by solving Schrӧdinger equation. 𝑥𝑈𝑥, 𝑦𝑈𝑦, 𝑧𝑈𝑍 denotes unit vectors along the Cartesian axes. 

The emphasis is restricted to the stationery states by considering time independent Schrödinger 

equation which has the following form; 
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(𝐾. 𝐸 + 𝑃. 𝐸)𝜑 = 𝐸𝜑        3.23 

E is the eigenvalue energy described by the wave function 𝜑 for stationery states. The 

probability to find a particle at point  𝑟 is |𝜑(𝑟)|2. An electron in a potential energy landscape 

𝑣(𝑟) eqn 3.23 is written explicitly as; 

[
𝑝2

2𝑚𝑒
+ 𝑉(𝑟)] 𝜑(𝑟) = 𝐸𝜑       3.24 

𝑚𝑒 is the electron mass and 𝑝 is the quantum mechanical momentum operator which is given as; 

𝑝 = −𝑖ћ𝛻, 𝛻 =
𝜕

𝜕𝑥
𝑖^ +

𝜕

𝜕𝑦
𝑗^ +

𝜕

𝜕𝑧
𝑧^    3.25 

ћ is the reduced Planck constant. 

𝜑0 is the lowest energy solution of eqn 3.24. For a system at equilibrium, the electron occupies 

the lowest energy configuration 𝜑0. At equilibrium, the electron charge density is given by 

|𝜑(𝑟)|2. If one electron is added to the system, in the determination of the new distribution of 

electronic charge by the use of Pauli Exclusion Principle, the new electron is accommodated in 

the same eigenstate 𝜑0 as long as the two electrons have opposite spins. By adding |𝜑0|2 the 

electronic charge distribution becomes 2|𝜑0|2. The two electrons tends to repel each other and in 

the repulsive interaction modifies both the potential term 𝑉  and 𝜑0 , and shape in eqn 3.24. A 

proper description of systems with many electrons and nuclei need to be considered which 

modifies eqn 3.25. Here many body wave function Ψ is introduced which is dependent on 

electrons and nucleus position in the system. For N electrons of coordinates 𝑟1, 𝑟2, … … 𝑟𝑁 and M 

nuclei of coordinates 𝑅1, 𝑅2, … … 𝑅𝑀 we have; 

Ψ = Ψ(𝑟1, 𝑟2, … … 𝑟𝑁; 𝑅1, 𝑅2, … … 𝑅𝑀)     3.26 
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|Ψ = Ψ(𝑟1, 𝑟2, … … 𝑟𝑁; 𝑅1, 𝑅2, … … 𝑅𝑀)|2 is the new probability to find an electron 1 at point 𝑟1, 

electron 2 at point 𝑟2 and so on. Here our interest is on electronic charge density defined as the 

probability to find an electron at position 𝑟. 𝑝(𝑟1 = 𝑟) probability of finding electron 1 at 𝑟 when 

others could be anywhere basically is the logical ‘OR’ combination of all the configurations 

whereby 𝑟1 = 𝑟 and 𝑟2, … … 𝑟𝑁, spans the entire volume of the material. 

𝑝(𝑟1 = 𝑟) = ∫ Ψ(𝑟1, 𝑟2, … … 𝑟𝑁; 𝑅1, 𝑅2, … … 𝑅𝑀)|2 𝑑𝑟2, … … 𝑑𝑟𝑁 𝑑𝑅1, . … . … 𝑑𝑅𝑀 3.27 

The electron density is then given as; 

`𝑛(𝑟) = 𝑝(𝑟1 = 𝑟) + 𝑝(𝑟2 = 𝑟) +  … … … . . +𝑝(𝑟𝑁 = 𝑟)    3.28 

Because in quantum mechanics electrons are the indistinguishable particles whereby each term 

of the right hand side of eqn 3.28 is given by eqn 3.27 hence eqn 3.28 is written as; 

𝑛(𝑟) = 𝑁 ∫ Ψ(𝑟1, 𝑟2, … … 𝑟𝑁; 𝑅1, 𝑅2, … … 𝑅𝑀)|2 𝑑𝑟2, … … 𝑑𝑟𝑁 𝑑𝑅1, . … . … 𝑑𝑅𝑀 3.29 

If the many body wave function Ψ is normalized to a unit within a material; 

∫ Ψ(𝑟1, 𝑟2, … … 𝑟𝑁; 𝑅1, 𝑅2, … … 𝑅𝑀)|2 𝑑𝑟2, … … 𝑑𝑟𝑁 𝑑𝑅1, . … . … 𝑑𝑅𝑀 = 1  3.30 

Combining eqn 3.30 with eqn 3.29, the integral of the electronic charge density of a material 

throughout the entire material gives the number of electrons N; 

∫ 𝑛(𝑟)𝑑𝑟 = 𝑁          3.31 

For the introduction of the many body wave function eqn 3.24 becomes; 

(𝐾. 𝐸 + 𝑃. 𝐸)Ψ = 𝐸𝑡𝑜𝑡Ψ        3.32 

𝐸𝑡𝑜𝑡 eigenvalue is now representing the total energy of the system. 



30 
 

Taking into account N electrons and M nuclei , the Kinetic energy in eqn 3.32 is given as; 

𝐾. 𝐸 = − ∑
ћ2

2𝑚𝑒
𝛻𝐼

2𝑁
𝐼=1 − ∑

ћ2

2𝑀𝐼
𝛻𝐼

2𝑀
𝐼=1      3.33 

𝑀1, 𝑀2, … .. are the masses of nuclei. 

Laplace operator ∇2 derivatives are taken with respect to the coordinates of every particle for 

instance; 

𝛻𝐼
2Ψ =

𝜕2Ψ

𝜕𝑥1
2 +

𝜕2Ψ

𝜕𝑦1
2 +

𝜕2Ψ

𝜕𝑧1
2        3.34 

For potential energy we simplify the equations by counting the possible pairs of charges in the 

system. 

1
st
 Coulomb repulsion between electron pairs 

(𝑃. 𝐸)𝑒𝑒 =
1

2
∑

𝑒2

4𝜋𝜖0

1

|𝑟𝑖−𝑟𝑗|𝑖≠𝑗        3.35 

𝑖 and 𝑗 run from 1 to N. 𝑖 ≠ 𝑗 is excluded because an electron does not repel itself but repels 

another electron at another position. It is divided by 2 in order to count only one contribution per 

pair. 

2
nd

 Coulomb repulsion between pairs of nuclei 

(𝑃. 𝐸)𝑛𝑛 =
1

2
∑

𝑒2

4𝜋𝜖0

𝑍𝐼𝑍𝐽

|𝑅𝐼−𝑅𝐽|𝐼≠𝐽        3.36 

Atomic number is represented by 𝑍 and indices 𝐼 and 𝐽 run from 1 to M and the 3
rd

 Coulomb 

attraction between electrons and nuclei 
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(𝑃. 𝐸)𝑒𝑛 = − ∑
𝑒2

4𝜋𝜖0

𝑍𝐼

|𝑟𝑖−𝑅𝐼|𝑖𝐼        3.37 

𝐼 from 1 to M and 𝑗 from 1 to 𝑁. 

Combining eqn 3.32 to eqn 3.37, the many body Schrodinger equation becomes; 

[− ∑
ћ2

2𝑀𝑒
𝛻𝑖

2 − ∑
ћ2

2𝑀𝐼
𝛻𝐼

2 +
1

2𝐼 ∑
𝑒2

4𝜋𝜖0
𝑖≠𝑗

1

|𝑟𝑖−𝑟𝑗|
+

1

2
∑

𝑒2

4𝜋𝜖0
𝐼≠𝐽

𝑍𝐼𝑍𝐽

|𝑅𝐼−𝑅𝐽|
− ∑

𝑒2

4𝜋𝜖0

𝑍𝐼

|𝑟𝑖−𝑅𝐼|𝑖𝐼𝑖 ] Ψ = 𝐸𝑡𝑜𝑡Ψ 

            3.38 

Equation 3.38 is everything we need in studying behavior of materials at equilibrium. Solving 

eqn 3.38 and finding the eigenstates with lowest energy known as the ground state energy of a 

system, a good number of the equilibrium properties of materials can be calculated from elastic 

properties up to enthalpies of formation, phase diagrams and thermal properties. The challenge is 

that the solution of eqn 3.38 for all simplest systems for instance very small molecules is 

practically impossible. For example the description of the nuclei and electrons in the unit cell of 

a crystal like silicon, the volume of the unit cell of a diamond structure is 𝑎
3

4⁄   with 𝑎 = 5.43Å. 

A possible discretization of the unit cell volume would have points spaced by ∆𝑥~0.1Å. such 

grid could consist 𝑁𝑝 = 𝑎3

4⁄ (∆𝑥)3~40,000⁄ . To count four valence electrons for each of the 

atoms of silicon in a single unit cell as the well as the nuclei 𝑁 + 𝑀 = 10  particles, the 

specifications of the quantum state will require 𝑁𝑃
𝑁+𝑀~1046 complex numbers. To perform 

matrix operations with arrays of these complex numbers is obviously impossible. The 

complexity of the equation increases with the increase in size of the system. As a result, we have 

hierarchy of approximations to eqn 3.38 which enables study of materials at atomistic level with 

varying degrees of accuracy and complications.   
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3.321 Atomic Units 

The eqn 3.39 above is simplified to give the likelihood of finding its solution. Before simplifying 

it further, it is convenient to do the housekeeping of the units of measurements. The quantities 

that are required to be determined from experiments are the electron density, me, reduced Planck 

constant ћ , the electron charge, e, permittivity of vacuum, 𝜖0, and the nuclear masses, 𝑀𝐼, for 

naturally occurring elements, their nuclear masses are known and ranges.  

We assume the following; 

ћ = 1.05457163.10−34𝐽. 𝑆 

𝑚𝑒 = 9.10938291.10−31𝐾𝑔 

𝑚𝑝 = 1.67262164.10−19𝐶 

𝜖0 = 8.8541878210−12𝐹/𝑚 

The quantities given above are fundamental physical constants which do not depend on any 

given particular material under study. Eqn 3.38 has no empirical parameters which would require 

to be obtained for instance from estimates, measurements  or data fitting procedures, this study 

of material properties is referred to as ‘First Principles Approach ‘. 

 3.322 Clamped Nuclei Approximation 

After specifying atomic units and the fundamental physical constants, there is need to sort the 

mechanisms that will give a solution to the equation 3.39. At this point, the equation is 

describing generally everything in the states of matter hence not specific. In liquids and gases, 

the inter-molecular distances are considerably large therefore and the intermolecular forces are 

weak making the nuclei to travel long distances. Emphasis is put on solids and molecules where 

the nuclei remain typically in certain known positions and we make the assumption that nuclei 

are held clamped (immobile) in known positions. Here we concentrate on electrons which are 
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mobile as the nucleus is in a fixed position. For the nuclei to be immobile, it means that the 

nuclei are so heavy hence their nuclear masses are set to infinity 𝑀∞. This indicates that we 

neglect the kinetic energy of the nuclei and the coulomb repulsion between nuclei becomes a 

constant (Nolen Jr & Schiffer, 1969). The is reduced to; 

[− ∑
1

2
𝛻𝑖

2
𝑖 − ∑ 𝑉𝑛(𝑟𝑖) +

1

2
∑

1

|𝑟𝑖−𝑟𝑗|𝑖≠𝑗𝑖 ] Ψ = 𝐸𝑡𝑜𝑡Ψ    3.39 

We  give a definition of the coulomb potential of the nuclei by regarding 𝜑 as a function of 

electron coordinates and nuclear coordinates 𝑅𝐼 as external parameters (Liu & Liang, 2011).  

𝑉𝑛(𝑟) = − ∑
𝑍𝐼

|𝑟−𝑅𝐼|𝐼         3.40 

Defining many electron Hamiltonian; 

𝐻^(𝑟1, 𝑟2, … . . 𝑟𝑁) = − ∑
1

2
𝛻𝑖

2
𝑖 ± ∑ 𝑉𝑛(𝑟)𝑖 +

1

2
∑

1

𝑟𝑖−𝑟𝑗∨𝑖≠𝑗    3.41 

𝐻Ψ = 𝐸Ψ         3.42 

Single electron Hamiltonian becomes; 

𝐻0(𝑟) =
−1

2
𝛻2 + 𝑉𝑛(𝑟)       3.43 

H(𝑟1, 𝑟2, … . . 𝑟𝑁) = ∑ H0(𝑟𝑖)𝑖 +
1

2
∑

1

|𝑟𝑖−𝑟𝑗|𝑖≠𝑗      3.42 

 3.323 Independent Electrons Approximation 

From the equation 3.42 above the only interaction term remaining is the term describing 

Coulomb repulsion between electrons hence solving it will give some light to the solution of the 
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equation. Removal of this term will imply that the electrons don’t ‘see’ each other therefore no 

interaction between electrons which contributes to the total energy. 

∑ 𝐻0
^(𝑟𝑖)Ψ𝑖 = 𝐸Ψ        3.43 

The electrons become independent hence the probability |𝜑0(𝑟1, 𝑟2, … 𝑟𝑁)|2 of the first electron at 

𝑟1, second electron at 𝑟2 and electron N at 𝑟𝑁 is given by the product of individual probabilities 

|𝜑0(𝑟𝑖)|2 of finding 𝑖𝑡ℎ electron at N (Shemansky & Broadfoot, 1971).  

𝜑(𝑟2, … 𝑟𝑁) = ∅1(𝑟1) … … . . ∅𝑁(𝑟𝑁)      3.44 

The wave function ∅𝑖 is obtained as solutions for single electron Schrödinger equation. 

𝐻0
^(𝑟)∅𝑖(𝑟) = 𝜀𝑖∅𝑖(𝑟)       3.45 

[∑ 𝐻0
^(𝑟𝑖)𝑖 ]∅1(𝑟1) … … . ∅𝑁(𝑟𝑁) = 𝐸∅1(𝑟1) … … . ∅𝑁(𝑟𝑁)   3.47 

This equation is single electron Hamiltonian hence 𝐻0
^(𝑟1) acts only on ∅𝑖(𝑟1). 𝐻0

^(𝑟2) acts on 

∅2(𝑟2) and so on. Therefore, we can rewrite the equation as; 

[𝐻0
^(𝑟1)∅𝑖(𝑟1)]∅2(𝑟2) … … ∅𝑁(𝑟𝑁) + ∅𝑖(𝑟1)[𝐻0

^(𝑟2)∅2(𝑟2)] … . . . ∅𝑁(𝑟𝑁) + ⋯ … . .

= 𝐸Ψ1(𝑟1) … … . Ψ𝑁(𝑟𝑁) 

Using equation 3.45 we have; 

𝐸 = 𝜀1 + 𝜀2 +  … . . +𝜀𝑁       3.47 
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3.324 Exclusion Principle 

This principle states that electrons are ‘fermions’ hence the many-body wave function Ψ must 

change sign when the variables of two electrons are exchanged. The exchange involves the 

positions and the spin of electrons. The principle simply states that no two electrons can occupy 

the same electronic state. Electrons of the wave functions ∅1(𝑟1)∅2(𝑟2) with ∅1 ≠ ∅2 does not 

satisfy the requirement but the wave functions does (Kutzelnigg, Del Re, & Berthier, 1968).   

Ψ(𝑟1, 𝑟2) =
1

√2
[∅1(𝑟1)∅2(𝑟2) − ∅1(𝑟2)∅2(𝑟1)]2    3.48 

Writing the equation in a matrix determinant called Slater determinant. 

Ψ(𝑟1, 𝑟2) =
1

√2
|
∅1(𝑟1)∅1(𝑟2)

∅2(𝑟1)∅2(𝑟2)
|      3.49 

Electron charge density of independent electrons is the total sum of the probabilities of finding 

electrons in each of the occupied state 𝑖. 

𝑛(𝑟) = ∑ |∅1(𝑟)|2
𝑖         3.50 

3.325 Mean Field Approximation 

Distribution of electronic charge 𝑛(𝑟) generates potential 𝜑(𝑟) by Poisson’s equation (Aichhorn, 

Pourovskii et al; 2009). 

𝛻2𝜑(𝑟) = 4𝜋𝑛(𝑟)        3.51 

Electrons in electrostatic potential contain Hartree potential which satisfies Poisson’s equation. 

𝑉𝐻(𝑟) = −𝜑(𝑟) 
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𝛻2𝜑(𝑟) = −4𝜋𝑛(𝑟) 

𝑉𝐻(𝑟) = ∫ 𝑑𝑟′
𝑛(𝑟′)

|𝑟 − 𝑟′|
 

[
𝛻2

2
+ 𝑉𝑛(𝑟) + 𝑉𝐻(𝑟)] ∅𝑖(𝑟) = 𝜖𝑖∅𝑖(𝑟) 

𝑛(𝑟) − ∑ |∅𝑖(𝑟)|2

𝑖

 

𝛻2𝑉𝐻(𝑟) = 4𝜋𝑛(𝑟)        3.52 

 3.326 Hartree-Fock Equations 

When electrons are not interacting with each other it means many body wave function is written 

as a Slater determinant to obtain single particle wave function as a solution to single particle 

Schrӧdinger Equation. Single wave functions are found by the use of variational principle. A 

quantum state of the lowest energy is found by multiplying both sides by 𝜑 and doing integration 

(Chetyrkin & Tkachov, 1981). 

𝐸 = ∫ 𝑑𝑟1 … … … 𝑑𝑁𝜑∗𝐻^φ       3.53 

𝐸 = ⟨𝜑∗𝐻^φ⟩         3.54 

Minimizing E with respect to ∅𝑖(𝑟) in the slater determinant the functions need to be 

orthonormal. 

𝛿𝐸

𝛿∅𝑖
∗ = 0 

∫ 𝑑𝑟 𝜑∗(𝑟)∅𝑗(𝑟) = 𝛿𝑖𝑗       3.55 
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𝛿𝑖𝑗 −Kronecker delta and is equal to 1 if 𝑖 = 𝑗 and 0 if 𝑖 ≠ 𝑗. Then we find the Hartree-Fock 

equations (Lions 1987). 

[
−𝛻2

2
+ 𝑉𝑛(𝑟) + 𝑉𝐻(𝑟)] ∅𝑖(𝑟) + ∫ 𝑑𝑟′𝑉𝑥(𝑟, 𝑟′)∅𝑖(𝑟) = 𝜖𝑖∅𝑖(𝑟) 

𝑛(𝑟) − ∑ |∅𝑖(𝑟)|2

𝑖

 

𝛻2𝑉𝐻(𝑟) = −4𝜋𝑛(𝑟) 

These equations have an additional potential 𝑉𝑋  

𝑉𝑋(𝑟, 𝑟′) = − ∑
∅𝑗

∗(𝑟′)∅𝑗(𝑟)

|𝑟−𝑟′|𝑖        3.56 

An advantage of these equations is that they move us from classical electrons to quantum 

electrons. On the other hand it is disadvantageous as they introduces a non-local potential 

𝑉𝑋(𝑟, 𝑟′) whose integration complicates the practical solution. 

3.327 Kohn-Sham Equations 

Here equation is simplified by eliminating Coulomb interaction of the electrons and the 

transformed 3N-dimensional many body Schrӧdinger equations into N three-dimensional 

equations. So far the correlation between electrons term is the only term remaining to be 

simplified. As to Coulomb repulsion the probability to find an electron decreases if there exists 

another electron near as shown in eqn 3.57 (Harrison, 1985).  

|𝜑0(𝑟)|2 + |𝜑0(𝑟)|2 = 2|𝜑0(𝑟)|2      3.57 
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Repulsion is defined by an additional component 𝑉𝑖(𝑟) for correlation. Also replace the 

complicated exchange potential with a simpler version with same effect but depends on only one 

space coordinate 𝑉𝑥(𝑟) which is the simplified local exchange potential (Hedin & Lundqvist, 

1971). 

[
−1

2
𝛻2 + 𝑉𝑛(𝑟) + 𝑉𝐻(𝑟) + 𝑉𝑋(𝑟) + 𝑉𝐶(𝑟)] ∅𝑖(𝑟) = 𝜀𝑖∅𝑖(𝑟)   3.58 

3.4 Pseudopotentials 

This is a residual attraction between an ion and an electron after taking account of the effective 

repulsion which is as a result of the interatomic interactions. Pseudopotentials are well known to 

impact much in the understanding of the electronic structure of semiconductors. Empirical 

pseudopotentials provide the best way in understanding dielectric and optical semiconductor 

properties together with their energy band structures. Construction of meaningful one electron 

potential with its corresponding energy band structure has been made possible by the 

adjustments allowed by Empirical Pseudo Potential Method (EPM) to one electron potential. The 

EPM provides an effective and simple means of coupling the theoretical band structure to 

experiment work which has immediate impacts (Lu Low, Yang, Han, Fan, & Yeo, 2012). The 

optical properties in the high interesting semiconductors are effectively interpreted by EPM that 

has drawn conclusions existing to date. 

The density functional theory coupling with the pseudo potentials has made a very crucial 

progress step in the quest of understanding electronic structure of materials. The current methods 

that facilitate use of pseudopotentials are vital in the examination of existing new material 

systems. These systems are the amorphous solids, nanoscale systems, liquids and glasses. This 

has made the study of systems, liquids and glasses a reality. This has made the study of both 

software and hardware advance and now it is possible to address systems constituting of very 
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many atoms hence the pseudopotential knowledge has become key special standard model for 

condensed matter. 

The pseudopotential concept has a basis on natural spatial and energetic separation of valence 

and core electrons. It has allowed reduction of the computational efforts that has essential 

physics. The interaction of the valence and core electrons gives adequate description by the 

effective Hamiltonian model (Dolg, 2000). Pseudopotentials allow convenient and effective 

expansions of wave functions in plane waves terms best suited in describing periodical systems 

which has enabled their common use in band structure calculations. The pseudo potentials give 

an advantage as they enable reduction in the basis sets for non-periodical and molecular systems 

which is a crucial aspect in the study of many core electron compounds for instance transition 

metals.  

In the density functional theory study, several ways have been developed in the generation of 

pseudopotentials. Some of the developed ways construct pseudopotentials for pseudo orbitals 

which are derived from atomic calculations and parameterized analytical pseudopotentials. 

Implementation of numerical integration in the solution of density functional theory, one electron 

equation known as the discrete variational method (DVM) is used hence does not necessarily 

need pseudo orbital and pseudopotential fitting by the use of any analytical function due to the 

direct computation of the matrix elements of the effective Hamiltonian (Rotter, 2003). 

Pseudopotential development is based on inclusion of core atomic orbitals in the valence pseudo 

orbitals   due to the reason that they produce Eigen functions to different Hamiltonians. The 

pseudo – wave functions allow expansion within some tractable number of plane waves which 

has led to high success of the ultrasoft pseudopotentials. The pseudo atoms that have the core 
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radii 𝑟𝑐 have a plane wave cut off of about 
2𝜋

𝑟𝑐
 which makes its construction too small when the 

core radius is adopted in the pseudo potential in comparison to typical inter atomic distances 

making the pseudo potential too hard as required. Plane waves in the description of its norm 

conserving wave function becomes too large. Here the elements affected are those with one 

radially nodeless orbital for instance 3d, 2p and 4f in the valence cell. In this case of valence 

states, the norm conserving pseudo valence orbital is not different from the original true orbital. 

At 𝑟 = 0 both have 𝑟′ + 1 and beyond 𝑟𝑐 their construction is identical between 𝑟𝑐 and 0 and are 

both nodeless with the same spatial norm. In these scenarios the pseudopotentials are noted to be 

resulting from inversion of Schrӧdinger equation with very strong variations in the small interval 

between 𝑟𝑐 and 0 which is hard as it requires many plane waves that will correspond to wave 

functions. 

The process of obtaining manageable pseudopotentials for the atoms, Vanderbilt led a shift from 

a more complicated scheme of pseudopotential that had its basis on orthonormality conditions 

which allowed generation of another new family smooth, reliable and of pseudopotential which 

can be transferred by the release of the condition of the norm conserving (Hamann, 2013). In this 

case the pseudopotential has the allowance of being as soft as possible in the core region to 

enable reduction of the plane wave cut off 𝐺𝑐𝑢𝑡 drastically. When this is applied to the study of 

compounds which involve rare-earth atoms and transition metals such as oxides and nitrides, it 

confirms its accuracy and reliability hence adopted and implemented widely despite its 

numerical complexity and great concepts. This makes the scheme work extremely well even to 

the worst cases. 
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The pseudopotential 𝑉𝑝𝑝 and the effective core potentials (ECP) are used to exclude atomic core 

electrons which are inactive from the explicit treatment in the quantum chemical calculation 

(Gomes & Jacob, 2012). In the corporation of the major scale relativistic effects in calculations, 

they are convenient and reliable techniques. The effective core potentials are derived to model 

core electron generated potential in an atom which enables us to obtain non-relativistic equation. 

It also helps in the modeling of relativistic fields and other fields such as the Hartree-Fock. The 

effective core potential depends on pseudo orbital transformation which is the radial node of the 

valence orbital being removed from the core region hence no need for base functions in the 

modeling of the nodes in all electron calculations (Hay and Wadt 1985).  

Computation in condensed matter in conjunction with plane wave basis sets have broad areas of 

application due to their systematic convergence and ease of use properties. Plane waves that have 

a basis of General Weighted Average calculations are applied to defects, surfaces, clusters and 

sp-bonded bulk solids and their interfaces. The plane wave basis sets increases in relation to the 

system volume and their energy cut-off 𝐸𝑐𝑢𝑡 is necessary in description of convergence. The 

plane waves also have no physical description which is direct and because of this local density 

orbital basis sets are used instead (Zunger & Freeman, 1977). Wave function of band n and wave 

vector k can be expressed with reference to Fourier components 𝐶𝑛𝑘(𝐺) where G is the 

reciprocal lattice vector. 

∅𝑛𝑘(𝑟) =
1

√𝑣
∑ 𝐶𝑛𝑘(𝐺)𝑒𝑥𝑝(𝑖(𝐾 + 𝐺). 𝑟)𝐺      3.59 

The matrix element between unoccupied conduction (𝑛 = 𝑐) and occupied valence (𝑛 = 𝑣) 

states are defined by; 

𝑀𝐺
𝑣𝑐(𝑘𝑞) = ∫ ∅𝑣𝑘−𝑞

∗ (𝑟)𝑒𝑥𝑝(−𝑖(𝑞 + 𝐺). 𝑟)∅𝑐𝑘(𝑟)𝑑𝑟   3.60 
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∑ 𝐶𝑣𝑘−𝑞
∗ (𝐺′ − 𝐺)𝐶𝑐𝑘(𝐺′)𝐺′        3.61 

Independent particle polarizability is given by; 

𝑃𝐺𝐺
𝑜 . (𝑞, 𝜔) =

2

𝑉
∑ ∑ ∑ 𝑀𝐺

𝑉𝐶(𝑘, 𝑞)[𝑀𝐺
𝑉𝐶 , (𝑘, 𝑞)]∗𝐵𝑍

𝐾
𝑢𝑛𝑜𝑐𝑐
𝐶

𝑜𝑐𝑐
𝑉    3.62 

Factor 2 gives account for spin degeneracy. 

Independent particle Green function together with frequency convolution which are expressed in 

terms of Fourier component and wave function of the screened interaction which determines the 

elements of the self-energy for the following summation of unoccupied and occupied states 

(Heather & Metiu, 1987).  

⟨𝑚, 𝑘| ∑(𝐸)𝑙, 𝑘 |⟩ =

1

𝑉
∑ ∑ ∑ 𝑀𝐺′

𝑛𝑙(𝑘, 𝑞)[𝑀𝐺
𝑛𝑚, (𝑘, 𝑞)]∗

𝐺𝐺′
𝐵𝑍
𝑞

𝑜𝑐𝑐+𝑢𝑛𝑜𝑐𝑐
𝑛 × ∫

𝑒𝑥𝑝 (𝑖𝜔𝛿)𝑊
𝐺𝐺′(𝑞,𝑤)

(−2𝜋𝑖)𝐸+𝜔−𝜖𝑛𝑘−𝑞−𝑖𝛿sin (𝜇−𝜖𝑛𝑘−𝑞)
𝑑𝑤

∞

−∞
  

     3.63 

Matrix elements 𝑀𝐺
𝑛𝑚(𝑘, 𝑞) are generalized to arbitrary states of m and n. Matrix elements 

construction scales in relation to the number of plane waves used in the description of the local 

density approximation (LDA) wave functions. These matrix elements are determined in 𝑁𝐺  

operates where 𝑁𝐺  is the number of plane waves that is employed to describe the plasmon-pole 

eigen vectors. Determination of the self-energy is done through the summation of local density 

approximation bands over plasmon-pole bands (Engel & Farid, 1993). The number of plasmon 

pole bands and local density approximation bands as well as 𝑁𝑃𝑊 and 𝑁𝐺  have a linear increase 

that depends on the size of the system having the same order. Generally, the algorithm increases 

depending on the number of plane waves and the size of the system to the fourth order. Any 
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evaluation approximately of self-energy through Taylor expansions at some given sets of 

energies have reduction of the General Weighted Average (GWA) calculation scaling to 𝑁𝑃𝑊
3  

and give allowance of the larger GWA calculations based upon plane waves (Engel & Farid, 

1993). 

The pseudopotential approximation replaces the Coulomb potential in the many body 

Hamiltonian with smooth function which allows the electron wave functions to oscillate rapidly 

in the core region and are replaced by nodeless pseudo orbitals with outer range properties and 

right energy. The pseudo charge 𝑍𝑝𝑝 defines the pseudo potential 𝑉𝑝𝑝 by; 

𝑉𝑝𝑝(𝑟) =
−𝑍𝑝𝑝(𝑟)

𝑟
        3.64 

𝑍𝑝𝑝(𝑟) = 𝑓(𝑟), 𝑟 ≤ 𝑟𝑐        3.65 

1, 𝑟 > 𝑟𝑐
′         3.66 

The cutoff radius 𝑟𝑐 separates the core 𝑟 ≤ 𝑟𝑐 from valence region, 𝑟 > 𝑟𝑐 of the target f(r) which 

is a continuous function with a constant origin value. There is agreement between pseudo wave 

function and one electron Hartree Fock (HF) orbital in the outer region which facilitates losing of 

all information of the atomic structure close to the origin. The pseudopotential affects both 

representation of bound orbitals and determines form of the continuum wave functions. 

3.5 Self-consistent field Calculation (Scf) 

Immediately after we created an input file and set it properly, we performed self-consistent field 

calculation. This calculation began with the construction of the beginning density that was 

automatically generated because there wasn’t any other density in the working directory because 

the calculation would have started with the present density which would be wrong. The running 
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of self-consistent field follows the chat below. Entering the self-consistent loop, the density that 

is present is made use of in the construction of an effective potential which gave solutions to the 

Kohn-Sham equations. The resulting Eigen-functions led to the generation of new density which 

is properly checked and should be similar to the input density hence solution of self-consistency 

would have been achieved. 
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Self-Consistency Schematic Flow Chart 

 

The self-consistent field loop processing is affected by the parameters present in the input file. 

The most crucial parameters give determination on when the program come to a controlled end. 

By this, one is able to define the maximum number of iterations performed and the criteria for 

convergence that leads to immediate stopping. Density mixing scheme configuration plays a vital 

role in the self-consistency calculations by specifying a general mixing procedure up to some 

extent the several mixing schemes give the construction of the next densities of all densities 

calculated. 

Once self-consistency calculations has obtained the charge density, other calculations on fixed 

density can be performed hence non self-consistent and they include; 
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a) Kohn-Sham orbitals and energies for a given set of k-points. 

b) Empty Kohn-Sham state calculation and increased number of computed bands Kohn-

Sham energies. 

c) The non-self-consistent calculations are primarily done for the computation of density 

of states and the plotting of the Kohn-Sham bands. 

In the input file type of calculation has to be indicated for the calculation to run depending 

on the property under investigation i.e scf. 

3.6 Elastic constants calculations. 

The elastic constants give the measurements of the proportionality between stress of a crystal and 

strain provided the strain isn’t  so large to lead to permanent deformation of the material (Rivlin, 

1948). Applying strain on the crystal and measuring strain versus the energy and determined 

elastic constants from the curvature of the function at zero strain. A strain is associated with a 

specific elastic constant combination. Cubic systems for instance diamond a basic material has 

three elastic constants (Bragg & Bragg, 1913) that are independent the 𝐶11,𝐶12, and 𝐶44 one 

linear combination obtained by bulk modulus given as; 

𝐵(𝑉) =
1

3
+2𝐶12       3.67 

B-bulk modulus 

𝐶12-elastic constant 

Our material at stability possess tetragonal structure. Computationally we calculated its 6 elastic 

constants as given as; 

C11>0, C33>0, C44>0, C66>0, 
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C11-C12>0, C11+C33-2C13>0,        3.68 

2(C11+C12)+C33+4C13>0.  

3.7 Density of States Calculation     

Calculation of density of states give description of the number of states available in a material 

system which are essential in the determination of energy distributions and carrier concentrations 

in a semiconductor (Kirsch & Metzger, 2007). Self-consistent field and non-self-consistent field 

calculations have to be performed before calculating the density of states. This enables 

production of Kohn Sham equations and creation of the required density which gives an 

advantage of post-processing QUANTUM ESPRESSO utility (Herath et al., 2020). Atomic 

charge and atomic spacing of a material in some systems allow only electrons of certain 

wavelength to exist. Crystalline structure of a material in other systems allow propagation of 

waves in one direction suppressing propagation in the other directions (Stanke & Kino, 1984). 

Mostly only specific states are allowed. This enables many states to be available for occupation 

at a given energy level with no states available at the other energy levels. Density of states of 

electrons at the edge of the band between conduction and valence bands of a semiconductor for 

instance, the increase of the electron energy enables more states to be available for occupation 

(Mitterbauer et al., 2003). In the other scenarios the density of states is usually discontinuous for 

an interval of energy an indication that no states are available in the occupation of electrons 

within the band gap of that given material. This condition indicates an electron at the edge of the 

conduction band has to lose some energy in fact at least band gap energy of that material for it to 

transit to the valence band (Matsui et al., 2021). This characteristic gives a determination if the 

material is a metal or insulator. Also conducting properties are determined by the available 

number of states in a band (Adler & Feinleib, 1970). For instance, for a one dimension structure 
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an odd number of electrons for each atom leads to half-filled top band hence there exist free 

electrons at Fermi level which results in a metal (Lang, 2021). The even number on the other 

side kills exactly whole number of the bands and others left empty. The material becomes a 

semi-conductor or insulator if the Fermi level will lie in the occupied band gap in between the 

lowest empty state and the highest occupied state (Mora-Seró & Bisquert, 2003). Density of 

states can be calculated for photons, phonons or electrons that can be used as a function of wave 

vector or energy depending on the quantum mechanical system being used. Topological 

properties of a material such as band structure contributes a lot in the properties of the density of 

states (Narang, Garcia, & Felser, 2021). Projected density of states computed the information of 

the different contributions of the different orbitals. Different states that contributed at different 

energies were noted. 

Density of states are calculated in relation to the Fermi-Energy of the material by considering the 

vibration modes. the individual elements are studied in terms of atom vibrations. 

The limitations of Density of states calculations is the absence  of the states and also the phonon 

hardening. 

3.8 Band Structure 

The band structure give the description of the range of the energy levels the electrons can have 

along with the ranges of energy that may not have (Herman, 1955), known as forbidden bands. 

Band theory forms the band gaps and bands investigating the permitted quantum wave functions 

for electron in a very large periodic lattice of molecules and atoms. Band theory successively has 

been made use of in explaining very many physical properties such as optical absorption and 

electrical resistivity which forms the basis of the understanding of the solid state devices such as 
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transistors and solar cells (Arjona-Esteban et al., 2015). An isolated atom has electrons 

occupying atomic orbitals each having segregated energy level. When these two or more atoms 

come together they form a molecule with overlapping orbitals (Hoffmann, 1971). If very many 

such electrons from identical atoms combine to form a solid such as a crystal lattice whose 

atoms’ atomic orbitals are overlapping with the nearby orbitals (Edmiston & Ruedenberg, 1963). 

Each independent energy level separates into electron levels each possessing different energy 

(Wannier, 1937). In a macroscopic piece whereby the number of atoms is very large also the 

number of orbitals become very large hence closely spaced in energy (Woodward & Hoffmann, 

1969). The formation of bands is a characteristic of the valence electrons which are the 

outermost electrons which are involved in electrical conductivity and chemical bonding (Matta & 

Gillespie, 2002). The electron orbital belonging to the inner side are involved in the overlap 

hence exist narrowly (Gianturco, Guidotti, & Lamanna, 1972). Band gaps are the residue ranges 

of energy that are not occupied due to discrete widths of energy bands (Smith & Nie, 2010) 

(Fokin & Schreiner, 2009). The bands possess different widths depending on the degree which 

the atomic orbitals overlap where they are originating from (Goodenough, 1960). Bands with 

core orbitals for instance 2s electrons are too narrow because of the existence of small overlap 

between adjacent atoms. This results to large band gaps in between core bands. Higher bands 

contain considerably larger orbitals having more overlap which becomes wider at higher energies 

facilitating no existence of band gaps at higher energies (Drye, 2014).  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

At stability the compound is tetragonal and the stable structure is given below; 

4.1 Crystal Structure  

 

Fig 4.1: Crystal structure of 𝐶𝑎𝐹𝑒2𝐴𝑠2 as visualized from quantum espresso Xcrysden package.                               

𝑎 = 𝑏 ≠ 𝑐 

The optimized cell parameters a = 3.97 Å and c = 12.84 Å, agrees well with experimental and 

theoretical work as shown in Table 4.1 below. Optimization of parameters such as lattice 

constants and cut-off energy was done to obtain a relaxed structure free from stress (Ronning, 

Klimczuk, Bauer, Volz, & Thompson, 2008) (Omboga & Otieno, 2020). 
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The elastic properties of the iron pnictide materials give crucial information on the bonding 

character between the neighboring atomic planes, stability of the structure, the material’s 

stiffness and the anisotropic type of bonding (Siryabe, Rénier, Meziane, Galy, & Castaings, 

2017). Debye temperature, interatomic bonding, thermal expansion and interatomic potentials 

also are provided by the elastic properties (Grimvall & Sjödin, 1974). Definition of the elastic 

constants is done by Tylor expansion of the total energy which is the derivative of the energy as 

a function of lattice strain (Vitos, 2001). 

        Table 4.1: Comparison of experimental and theoretical cell dimensions 

 Parameter Our work   Experimental Theoretical Reference 

 a0=b0(Å)   3.97  3.887    3.829    (Goldman, Kreyssig et al. 

2009)  (Wu, Chen et al. 2008) 

c0 (Å)    12.84  11.758   11.862     (Goldman, Kreyssig et al. 

2009)  (Wu, Chen et al. 2008) 

Table 4.1 has the summary lattice parameters of our work in comparison with experimental ones. 

This material’s optimized cell dimensions are a=3.97 and c=12.84 which are in a good 

agreement with related researches in ref (Samuel, Otieno, & Nyawere, 2023), ref (Carter & 

Britton, 1972) and ref (Winichayakul et al., 2020). Figure 4.2 reveals the band structure of this 

material whereby the conduction and valence bands overlap. This indicates that 𝐶𝑎𝐹𝑒2𝐴𝑠2 has 

high conductivity similar to that of metals. This superconductivity enables it to be one of the 

most important products of technology because of the growing interest in electrical systems. 

Figure 4.4c shows that p and s-orbitals of this material dominates the conduction band 

facilitating its superconductivity. 
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Table 4.2 below gives results of the elastic constants of CaFe2As2 as calculated and reported for 

the first time.  

             Table 4.2: Elastic Constants of tetragonal CaFe2As2  

 Cij     GPa 

C11     88.86 

C12     22.58 

C13     28.63 

C33     63.51 

C44     25.93 

C66     31.73 

Elastic constants C11 and C33 portray the level of deformation resistance along the a-axis and c-

axis, respectively. Evaluated elastic constant C11 for CaFe2As2 is greater than that of elastic 

constant C33 by around 39.9%, a clear indication that this compound contains strong deformation 

resistance along the a-axis compared to c-axis. 

On the other side, the elastic constant C44 describes the extent of shear distortion in the [1 0 0] 

plane, while the elastic constant C66  indicates the shear resistance in the [1 1 0] direction (Parvin 

and Naqib 2019). 

This compound’s elastic constants satisfy the requirement for mechanical stability conditions 

given by eqn. 4.14. Elastic constants C44 and C66 of CaFe2As2 obtained are 25.93 GPa and 31.73 

GPa which are far less than other iron pnictides, clear indication that CaFe2As2 has a lower 

deformation resistance compared to other iron pnictides for instance BaFe2As2. Deformation 

resistance is extensively accepted as a crucial engineering property of asphalt used for surfacing 
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and construction of roads (Winichayakul et al., 2020). A higher deformation resistance indicates 

reduced potential for asphalt shearing, rutting and shoving mainly under heavy and slow-moving 

loads making CaFe2As2  non effective. 

The Young modulus E and Poisson’s ratio n and their relationships with bulk modulus and shear 

modulus are as tabulated in Table 4.3 below (Phani & Sanyal, 2008).  

The shear anisotropic factor for the (Pai, 1995) shear planes between the <011> and <010> 

directions is; 

𝐴1 =
4𝐶44

𝐶11+𝐶55−2𝐶13
              4.1a 

For the (Kwak, Kim, & Bae, 2002) shear planes between <101> and <001> directions it is; 

𝐴2 =
4𝐶55

𝐶22+𝐶33−2𝐶23
                  4.1b 

For the (Kwak et al., 2002) shear planes between <110> and <010> directions it is 

𝐴3 =
4𝐶66

𝐶11+𝐶22−2𝐶12
        4.1c 

But since the crystal does not have C22 and C55 our calculations of shear anisotropic factors are 

only for A1 which is 1.0914 showing that the compound is anisotropic hence can withstand 

extreme thermal conditions. 

Another important mechanical property of materials is the Vicker’s hardness 𝐻𝑣 which can be 

predicted by eqn. 4.1d (Gong, Wang, & Guan, 2002); 

𝐻𝑣 = 0.92 (
𝐵

𝐺
)

1.3137
𝐺0.708    4.1d 
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B- Bulk Modulus 

G- Shear Modulus 

Materials with Vicker’s hardness beyond 40GPa are considered to be super hard materials. The 

Vicker’s hardness to our compound is 18.1193GPa an indication that the compound is not hard 

enough to resist being dented. 

Debye temperature is another basic physical property which distinguishes between low and high 

temperature regions for a given material. We calculated the Debye temperature for this 

compound by the use of the following formula (Toher et al., 2014); 

𝜃𝐷 =
ℎ

𝐾𝐵
[6𝜋2𝑉

1
2𝑛] 𝑓(𝜎)√

𝐵𝑆

𝑀
 

𝜎 = −
𝑑𝜖𝑡𝑟𝑎𝑛𝑠

𝑑𝜖𝑎𝑥𝑖𝑎𝑙
 

𝑓(𝜎) = {3 [2 (
2

3

1+𝜎

1−2𝜎
)

3

2
+ (

1

3

1+𝜎

1−𝜎
)

3

2
]

−1

}

1

3

                 4.1e 

Where V is the unit cell volume, n number of atoms in a unit cell, 𝐵𝑆 bulky modulus, M molar 

mass, 𝜎 poisson ratio which is positive Table 4.3. The calculated Debye temperature is 3.8707K 

hence we expect frozen high frequency modes (Rabah, Benalia et al; 2010). 

We have done the estimates of shear modulus (G) and bulk modulus (B) of polycrystalline 

aggregates from individual elastic constants, 𝐶𝑖𝑗 by Reuss and well known as voigt 

approximations which enables us to give the averages for the single crystal constants (Chung & 

Buessem, 1967). 
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Shear modulus indicates strength of the material unlike the bulk modulus. G˃B, hence CaFe2As2 

mechanical failure should be corrected by application of the shear component. Bulk modulus B 

reveals the extent to which a material is compressible in relation to another (Mott, Dorgan, & 

Roland, 2008). The higher the value of B, the incompressible the material is (Mott et al., 2008). 

BaFe2As2 is more incompressible than CaFe2As2 with a value of 71GPa. CaFe2As2 has a value of 

0.1807 for the calculated 𝐴𝑈 and is therefore anisotropic. The Poisson’s ratio (Jinyun, Yi, Lam, 

& Xuyong, 2010) determines ductility or brittleness of the material. The higher the ratio, the 

more ductile the material is, whereas a low value indicates less brittleness. For 
𝐵

𝐺
˃1.75 indicates 

ductility otherwise the material is brittle. 
𝐵

𝐺
 shows that the hardness is related inversely, meaning 

that the smaller the ratio, the harder the material. CaFe2As2 is fairly hard and brittle with  

𝐵

𝐺
= 0.655935. Poisson’s ratio (n) also helps us to assess the mechanical properties of crystalline 

solids. Its low value indicates stability against shear (Reddy, Krishna, & Ghosh, 2010). Poisson’s 

ratio at the same time reveals the nature of interatomic forces where a range of 0.25 and 0.50 

indicates central force interaction and outside this range for non-central force interactions. 

Moreover, according to Poisson’s ratio, materials whose ratio is less than 0.26 undergo brittle 

failure, but above this ratio they undergo ductile failure. Poisson’s ratio of CaFe2As2 shows that 

it is brittle (Case, 1984). Resistance to compressive or expansive forces is measured by Young’s 

modulus. From Table 4.3, the value of E is small, even smaller than that of BaFe2As2 of 101.6 

GPa, indicating that CaFe2As2 definitely cannot withstand large tensile stress (Greaves, 2013).  
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Table 4.3: Mechanical properties of Bulk, Shear, Young’s moduli and Poisson’s ratio. 

      Voigt-Reuss Approx     Reuss Approx    Voigt-Reuss Hill 

                       Average  

 

  Bulk Modulus (B) (GPa) 44.55      43.88     44.21 

  Young Modulus (E) (GPa) 68.39      66.40     67.40 

  Shear Modulus (G) (GPa)     27.48      26.60     67.40 

  Poisson’s Ration (n)              0.24      0. 25                 0.25 

 

Cauchy pressure (Eberhart & Jones, 2012) is the difference between C12 and C44 elastic 

constants. This parameter reveals more about the elastic response and large density of solids. 

Cauchy pressure will indicate ductility or brittleness failure of crystalline solids. Cauchy pressure 

of both negative and positive values indicates brittleness and ductility, respectively. It also 

reveals chemical bonds. Positive value indicates metallic bonds while the negative one indicates 

covalent bonds (Haaland, 1989). In our study, the Cauchy pressure of CaFe2As2 is -3.37, 

indicating that our compound is brittle with covalent bonding characteristics. 

4.1 Band Structure 

Band gap is the difference in the energy between the highest point of the valence band and the 

lowest point of the conduction band (Jovovic & Heremans, 2008). Semiconductor materials have 

either indirect or direct band gap (Califano, Lu, & Zhou, 2021). A direct band gap has aligned 

band edges which enable electrons to transit from the valence band and conduction band without 
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any considerable change in momentum. In the indirect band gap the band edges are not aligned 

which makes it difficult for the electrons to transit directly to the conduction band . 

Energy bands are categorized as filled, forbidden or mixed and empty bands (Knapp, Himpsel, & 

Eastman, 1979) (Cardona & Pollak, 1966). The levels of energy are occupied by the electrons 

which are distributed as per the Pauli exclusion principle as from the lowest energy level 

(Gamow, 1959) (Pauli, 1994). Electrical conductivity is facilitated by the electrons occupying 

the higher energy bands. The highest energy band occupied by the electrons corresponds to the 

valence band. The valence band is either partially or fully occupied. The empty states contribute 

to the electric current flow (Datta, 2004). The lowest energy band with unoccupied states is 

known as the conduction band. Conducting bands of materials, empty, filled or allowed states 

may interfere with the band gap also known as forbidden bands. The type of a material is 

determined by the width of the band gap; semiconductor, insulator or a metal (Escobar-Alarcón 

et al., 2007). At room temperature a semiconductor which gains sufficient energy to cross over 

the energy band gap is called intrinsic semiconductor.(Wagner, 2016) 

The following are results on the band structure, density of states, and projected density of states 

of CaFe2As2. The band structure of CaFe2As2 calculated by the calculated energy gaps of 

increasing oligomer lengths is shown in Fig 4.2 was computed along high symmetry points; Γ-X-

N-X-N-Γ.  
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Figure 4.2: Band structure of 𝐶𝑎𝐹𝑒2𝐴𝑠2.  

The regions above the fermi energy at zero represent the conduction bands and those ones below 

represent the valence bands. High symmetry points are the local points where there are more 

symmetry elements that occupy this point onto itself and is the same as the Brillouin zones. 

 The Fermi level is the highest occupied molecular orbital at absolute temperature. It is at the 

center between the conduction band and the valence band, separating the particles in each band 

with specific quantum states from interacting (Idrissi, Ziti, Labrim, & Bahmad, 2021). From Fig 

4.2, it is seen that the conduction band and valence band are overlapping, which is a clear 

indication that the compound is metallic and compares well with 𝑇ℎ𝐶𝑟2𝐴𝑠2 (Johrendt et al., 

1997).  
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4.3 Density of States and Projected Density of States 

Density of states gives numerical information on the available states at each energy level (Jelitto, 

1969). The density of states is zero when there is no available state to be occupied at the energy 

level (Roby, 1974). Density of states with a high value corresponds to the high number of energy 

state to be occupied. It describes the number of states available in a system which is important in 

the determination of energy distributions within a semiconductor (Roby, 1974). The free motion 

of carriers is minimized in semiconductors to zero, one and two spatial dimensions  (Yoffe, 

2001) (Bergeret, Volkov, & Efetov, 2001). The density of states and the projected density of 

states of CaFe2As2 are shown in Fig 4.3 and Fig 4.4.  

  

 

 

 

 

 

 

Figure 4.3: The Density of States of 𝐶𝑎𝐹𝑒2𝐴𝑠2. 

The peaks shows the vibration modes of the crystal lattice. 
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Figure 4.4a: The Projected Density of states of Fe p- and s-orbitals shows that they are more 

dominant in the conduction band. 

 

 

 

 

 

 

  

Figure 4.4b: The Projected Density of States of Ca p- and s-orbitals participates majorly in the 

conduction band of CaFe2As2. 
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Figure 4.4c: The Projected Density of States of p- and s-orbitals. P-states are more dominant in 

the conduction band than the s-states. 

 

 

 

 

 

Figure 4.4d: The total Projected Density of States of orbitals for CaFe2As2.  

The iron pnictide materials are formed in layered structures with charge reservoirs insulating the 

layers which contribute a lot in enhancing superconductivity (Bergeret et al., 2001). Iron based 

superconductors have a formation of constructive 2-D structure with irregular charge reservoir. 

For instance, at room temperature CaFe2As2 has a tetragonal structure and transit to 

orthorhombic upon subjection to pressure conditions. 
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From the angle resolved photoemission spectroscopy studies together with electronic structure 

calculations (Lv, Qian, & Ding, 2019), it is quite evident that the neighborhood Fermi level is 

made up of Fe d states (Fig 4.4d). Fe 3d states have a photoelectronic cross-section of around 10 

times that of As p states in between the phonon energy. In Fig 4.4b, Ca, p also exhibits the higher 

binding energy between the range of -3ev and 3ev CaFe2As2 splits at Ca layer keeping half of the 

calcium atoms on each side of the split surface which shows the reconstruction hence the 

electronic properties of Ca are different from that of bulk Ca. 

The contributions of Ca, d states are basically above the energy region with a nominal 

contribution at or below the energy region (J. Wang, Polleux, Lim, & Dunn, 2007). In the Fe-d 

and As-d, the contribution below the energy region shows a shift to the lower energies in the 

tetragonal phase that keeps the PDOS energy region approximately at the same energy range for 

both tetragonal and orthorhombic structural phases. From Fig 4.1, Ca layers are packed among 

two layers and any adjustment in Ca state below the energy region is as a result of the 

hybridization of Ca s-states with the electronic states attributed to As in the valence band(Khan 

et al., 2022). The compression at the c-axis as a result of the transition to the tetragonal state 

brought about by the subjection to an external pressure, which brings about reduction of the 

separation distance between As and Ca atomic layers which results in the enhancement of Ca s 

and As p. Even though it is evident that the contribution of Ca in the valence band is not much, 

its role in the structural change and electronic structure cannot be ignored. The S electrons in the 

cations play a key role in standardizing disorder effects and pairing interactions. 

CaFe2As2 compound has a tetragonal phase as the stable phase with five atoms; one Ca, two Fe, 

and two As which upon subjection to external pressure undergoes a phase transition to the 

superconducting orthorhombic phase, Fig 4.5 below. Superconductivity of a material basically 
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means that there is no resistance and the material’s flux fields are expelled from the material 

(Gonnella, Kaufman, & Liepe, 2016). The zero resistance in conductivity is facilitated by the 

lowering of temperature of a material  (Liang, Yao, Wang, Liu, & Wong, 2011) (Pang, Xu, Yan, 

& Li, 2014) . This is well taken care of by the condition upon which we are carrying out our 

experiments which is at ground state temperature. The same method is applied in a 

superconductor in achieving superior conductivity (Lee, 2007) 

In a superconductor, the conductivity happens in such a way that the electric current passed 

through a loop keeps on flowing without a need of a power supply (Bhattacharyya, Mitra, & 

Boro, 2002). We have Type I and Type II types of superconductors (Babaev & Speight, 2005). 

Type I has an abrupt transformation from a normal state to superconducting state at transition 

temperature and vice versa while Type II does not undergo abrupt transformation but partial one. 

Significant changes in the physical properties of a material occur for it to be transformed from 

non-superconducting state to superconducting state which is characterized with phase transitions. 

When external magnetic field is applied to a superconducting material beyond critical magnetic 

field point, the superconductor is transformed to normal conductor . Free energy of any 

conductor in the superconducting phase is lower than normal free energy in the non-

superconducting phase. The properties of superconductors are advantageous for instance low 

power loss due to less dissipation of energy, very high speed of operation due to the zero 

resistance and a flow of electric current that is continuous and very high sensitivity. 

Superconductors are active when kept under low temperatures.    

 CaFe2As2 tetragonal stable phase undergoes a phase transition at an external pressure of 0.2GPa 

to the orthorhombic phase.  
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Figure 4.5: Orthorhombic crystal structure with cell parameters 𝑎 ≠ 𝑏 ≠ 𝑐. 

Phase transition of this compound from the stable phase tetragonal to orthorhombic occurs at 

ground state temperature and external pressure of 0.2GPa that happens abruptly hence 

confirming that it is a Type I as shown in Fig. 4.5. Phase transition occurs when the enthalpy and 

pressure changes are the same or nearly the same (Agora, Otieno, Nyawere, & Manyali, 2020). 

These two changes are indicated by two curves of different colors . Where the two lines coincide 

is the phase transition pressure and in this case is best at 0.2 GPa.                                                         
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Series1- Energy, Series2- Volume 

 

 

          Series1- Volume 

          Series2- Pressure 

 

 

 

 

Fig 4.7: Graph of internal pressure against internal volume at an external pressure of 0.2 GPa. 

Pressure=0.1GPa    P = 0.2GPa  P = 0.3GPa 

 

 

 

Fig 4.6: Graphs of Volume against Energy for applied Pressure of 0.1GPa, 0.2GPa and 0.3 

GPa. The best fit occurs at 0.2 GPa where the two lines properly coincide. 
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Heat is a form of energy and the internal energy of this material changes as heat is transferred 

into or out of it as shown in Fig 4.6. Before the phase transition and after, the minimum energy 

and the enthalpy are quite different. Fig 4.7 is in agreement with Fig 4.5 with the phase transition 

at 0.2GPa. This is in good agreement with the related studies showing that the pressure 

suppresses structural phase transition at low temperature stabilizing superconductivity (Bag et 

al., 2022). The product of pressure and volume enables the measurement of energy within the 

material even when the system does not work with the surrounding. In Fig.4.7 clearly shows the 

estimated transition pressure which is 0.2GPa and internal volume at about 730𝑎. 𝑢3. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

i) Effects of Pressure on Electronic Properties. 

This research has done wide range of investigations on the effect of pressure on the mechanical 

and electronic properties of CaFe2As2. Additionally, we report the evaluation of the variations of 

the applied pressure and effects brought on the material. CaFe2As2 has not been fully exploited in 

terms of its properties. The material has a wide range of applications but its properties need to be 

enhanced by the subjection of external change of conditions. In coming up with well-presented 

results in the previous chapter, we employed the use of Ab initio studies on materials which 

makes use of material computation in the explicit study of materials.  

CaFe2As2 has a body centered tetragonal crystal structure at room temperature with a space 

group of 14/mmm and lattice parameters along the three axes of 3.97𝐴𝑜 , 𝑏 = 3.97𝐴𝑜, 𝑐 =

12.84𝐴𝑜 given in Fig.4.1. This material has all its angles equal to 90𝑜with side a equal to side b. 

After external application of pressure which facilitates its phase transition from tetragonal to 

body centered orthorhombic, the material contains lattices of all angle equal with all its sides 

unequal. The material is well described by these three lattice parameters. The material’s crystal 

structure is defined by the unit cell. The unit cell is the smallest repeated unit that has a full 

crystal structure symmetry. In the unit cell coordinates are used in the expression of the atomic 

arrangement. The structure has CaFe2As2 Ca confined between Fe-As along the c-axis. The 

tetrahedral Fe-As are the usual structural units to the 122 class of iron pnictides AFe2As2 and the 

oxypnictides RFeAsO superconductors. 

In Fig.4.2 is a graph that shows the calculated density of states (DOS) of this compound at 

tetragonal stable phase. There are many existing separated energy regions on the figure which we 
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attribute to As s-orbitals shallow core levels and valence electronic states. In the valence band we 

observe hybridization between As s-orbitals and Fe p-orbitals. Valence electrons in the 

neighborhood of Fermi level essentially contained Fe d-states. Fe-As hybridization results to As 

p-states finite contribution of Ca s-orbitals is found to be significant. This indicates that even 

though the Fe p-orbital and s-orbital states dominate the role of electronic properties of CaFe2As2 

the other orbitals contribute and are non-zeros because of the covalence between the states. 

Crystal is rigid on [1 0 0] and [0 1 0] in consideration of uniaxial stress, which indicates the 

strength of bonds in the individual points of the material. Using Poisson ratio in comparison with 

bulk, the shear and Young moduli in consideration of interatomic forces confirms that our 

material is brittle.  

ii) Effects of pressure on Mechanical Properties. 

In comparison, CaFe2As2 with BaFe2As2 these compounds belong to the same space group. 

CaFe2As2 has much smaller lattice parameters compared to BaFe2As2. The average bond lengths 

of this material for instance the Ca-As bond is much smaller as compared with Ba-As bond. This 

clearly indicates that Ca layer and FeAs layer interaction is so much stronger that of Ba layer 

with FeAs layer due to high forces of attraction. Most material’s electronic structure is highly 

sensitive to the changes in the crystal structure as various electronic states hybridization has high 

dependence on bond length, deformation of the lattice structure that brings about change bond 

angles. It is identified that covalency causes key interactions which leads to the deformation of 

the crystal structures which brings forth ground state properties (Sypek 2019).  

Cauchy pressure, which is the difference of elastic constants, reveals elastic response. CaFe2As2 

gives a negative value, hence indicating that it is brittle with covalent bonding characteristics.  
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For determining whether our material is anisotropic, calculation using the lattice parameters of 

our material, it indicated that it is isotropic just like its parent compound 𝑇ℎ𝐶𝑟2𝑆𝑖2. Band 

structure shows that CaFe2As2, is metallic a property that enhances its superconductivity. 

iii) Effects of varying pressure on phase change. 

CaFe2As2 is an interesting material as it exhibits a rich pressure-temperature phase diagrams 

which provides an effective avenue to study the interplay between superconductivity and 

magnetism in the Fe based pnictide compounds where superconductivity is driven by magnetic 

fluctuations. At ground state temperature tetragonal stable phase CaFe2As2 at some applied 

pressure of 0.2GPa undergoes a concomitant phase change to orthorhombic phase. The 0.2GPa 

applied pressure brought about both magnetic and structural transitions whereby magnetism is 

suppressed and the new transition emerges with no magnetic order. The applied pressure brought 

about occupation of the holes in the compound by the electrons hence superconductivity 

achieved by the hole or electron doping (Lv, Deng et al; 2011). The elimination of high 

temperature transition of the 111 and 122 iron pnictides is the basic necessity for emergence of 

superconductivity in these materials (Liu, Palczewski et al; 2011). It has been discovered that 

application of modest pressure leads to the suppression of the first order structural phase change. 

Over some limited amount of pressure application, superconductivity emerges which can in turn 

be suppressed which potentially high temperature phase. Pressure is a parameter made use in the 

tuning superconductivity behavior of these iron based compounds (Gati, Xiang et al; 2020). This 

confirms strong interaction between magnetic degrees of freedom, superconductivity and lattice 

in AFe2As2class. For instance magnetic frustration yields spin fluctuations in doped compounds 

which plays a critical role in superconductivity phases. 
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Pressure induced effects in the 122 class of iron pnictides has been investigated and emergence 

of superconductivity potentialities have been evaluated at different ranges of conditions of 

pressure and temperature. For superconductivity in SrFe2As2and BaFe2As2 containing the 

alkaline earth metals larger than Ca is identified  at fairly high pressures of 3.2GPa and 4GPa 

respectively (Till, Grove et al; 2012) with transition temperature of about 27K and 29K. 

CaFe2As2 on the other side shows superconductivity with transition temperature of 12K at lower 

pressures between 0.2GPa and 0.9GP (Johnston, Abdel-Hafiez et al; 2014) as the small atomic 

size of Ca employs less strain. Current research underground state temperature confirms the 

range of pressure applied for superconductivity to emerge in this material by taking the lower 

limit because of the constant room temperature.  

In Fig.4.5 we observe that the transition to orthorhombic antiferromagnetic phase is suppressed 

upon increasing pressure and disappear above pressure of 0.3GPa an indication of emergence of 

collapsed tetragonal phase. The result showing the absence of superconductivity exhibits sharp 

transitions in the pressure range which involves transitions from tetragonal to orthorhombic, 

orthorhombic to collapsed tetragonal and tetragonal to collapsed tetragonal phases. 

Superconductivity is identified at a pressure where the compound is in the proximity of the 

transition to collapsed tetragonal phase. The origin of superconductivity in the material thus 

appears to have a relation with the multi-crystallographic phases in between the intermediate 

pressure. 

The material undergoes a structural phase change at an external pressure of 0.2GPa from the 

tetragonal stable phase to orthorhombic at ground state temperature. This makes the material a 

good superconductor. The material is isotropic with uniformity of properties at all directions and 

this enables it to be used as the crystals with cubic symmetry.   
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SUGGESTION FOR FURTHER RESEARCH 

Investigate the effects of pressure and doping on the superconducting properties of iron pnictides, 

specifically examining how variations in these two factors influence the critical temperature and other 

relevant characteristics. 
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APPENDIX III: INPUT FILE 

This is a self-Consistent input file for the material under study. 

&control 

  calculation = 'scf' 

  restart_mode='from_scratch', 

  outdir = './tmp/' 

  prefix = 'CaFe2As2' 

  pseudo_dir = './' 

/ 

&system                       

 ibrav=7,  

 celldm(1) =7.89635 

 celldm(3) = 3.23425               

 nat= 5,                      

 ntyp= 3 

 nbnd= 52   

 ecutwfc= 40 

 ecutrho= 410.5 

 occupations= 'smearing' 

 smearing=  'gaussian' 

 degauss=  0.01                  

 / 

&electrons 

conv_thr =   1.0d-8 

mixing_beta =   0.2 

/ 
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ATOMIC_SPECIES 

As     74.9216 As.pbe-n-kjpaw_psl.1.0.0.UPF 

Ca     40.078 Ca_pbe_v1.uspp.F.UPF 

Fe     55.847 Fe.pbe-spn-kjpaw_psl.0.2.1.UPF 

ATOMIC_POSITIONS (crystal) 

As       0.438180441   0.347038371  -0.091142070 

As       0.561819559   0.652961629   0.091142070 

Ca       0.000000000  -0.000000000  -0.000000000 

Fe       0.056396927   0.751633072   0.695236145 

Fe       0.943603073   0.248366928   0.304763855 

    

K_POINTS automatic 

 6 6 4 0 0 0 
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APPENDIX IV: INTRODUCTION LETTER 
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