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Abstract

Hilbert space operators have been studied by many mathematicians. These

operators are of great importance since they are useful in formulation of

principles of mathematical analysis and quantum mechanics. The opera-

tors include normal operators, posinormal operators, hyponormal opera-

tors, normaloid operators among others. Certain properties of posinormal

operators have been characterized like continuity and linearity but numer-

ical ranges and spectra of posinormal operators have not been considered.

Also the relationship between the numerical range and spectrum has not

been determined for posinormal operators. The objectives of this study

have been: to investigate numerical ranges of posinormal operators, to

investigate the spectra of posinormal operators and to establish the rela-

tionship between the numerical range and spectrum of a posinormal op-

erator. The methodology involved use of known inequalities like Cauchy-

Schwartz inequality and the polarization identity to determine the nu-

merical range and spectrum of posinormal operators and our technical

approach involved use of tensor products. We have shown that the nu-

merical range of a posinormal operator A is nonempty, contains zero and

is an ellipse whose foci are the eigenvalues of A. We have also proved that

the spectrum of a bounded posinormal operator A acting on a complex

Hilbert space H satisfies Xia’s property; and doubly commuting n-tuples

of posinormal operators are jointly normaloid. The results obtained are

applicable in classification of Hilbert space operators and shall be applied

in other fields like quantum information theory to optimize minimal out-

put entropy of quantum channel; to detect entanglement using positive

maps; and for local distinguishability of unitary operators.

v



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . v

Index of notations . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 INTRODUCTION 1

1.1 Mathematical background . . . . . . . . . . . . . . . . . . 1

1.2 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Statement of the problem . . . . . . . . . . . . . . . . . . 13

1.4 Objectives of the study . . . . . . . . . . . . . . . . . . . . 14

1.5 Research questions . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Significance of the study . . . . . . . . . . . . . . . . . . . 15

2 LITERATURE REVIEW 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Numerical Ranges . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Relationship between numerical ranges and the spectrum

of operators . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 RESEARCH METHODOLOGY 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Fundamental Principles . . . . . . . . . . . . . . . . . . . . 33

vi



3.3 Known Inequalities and Techniques . . . . . . . . . . . . . 33

4 RESULTS AND DISCUSSIONS 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Numerical range . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 The relationship between the numerical range and spectrum 53

5 CONCLUSION AND RECOMMENDATIONS 58

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . 59

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



Index of Notations
V a set of vectors . . . . . . 9

W a set of vectors . . . . . . 9

K Field of Real or Complex

numbers . . . . . . . . 9

∥.∥ Norm . . . . . . . . . . . 10

∀ for all . . . . . . . . . . . . 10

⟨., .⟩ Inner product . . . . . 10

V X V cartesian product of

the vectors V, V . . . . 10

H Hilbert space . . . . . . . 11∑
summation of . . . . . . . 11

T ∗ Adjoint of operator T . 11

I Identity operator . . . . . 11

B(H) algebra of all bounded

linear operators on H . 12

σ(T ) Spectrum of T . . . . . 12

C a set of complex numbers 12

ρ(T ) Resolvent set of an op-

erator T . . . . . . . . 12

γ(T ) spectral radius of op-

erator T . . . . . . . . 12

sup Supremum . . . . . . . . 12

W (T ) Numerical range of op-

erator T . . . . . . . . 12

r(T ) Numerical radius of op-

erator T . . . . . . . . 13

x ⊥ y vectors x and y are

orthogonal . . . . . . . 13

W (T ) Closure of numerical

range of operator T . . 17

⊂ subset of . . . . . . . . . . 20

⊕ Direct sum . . . . . . . . 20

∪ Union . . . . . . . . . . . 20

∩ Intersection . . . . . . . . 20

≡ equivalent to . . . . . . . 21

viii



Chapter 1

INTRODUCTION

1.1 Mathematical background

The study of numerical range and numerical radius has a long and dis-

tinguished history[3],[56],[41],[58]. The notion of numerical range was

introduced by Toeplitz [55]. It has been investigated extensively because

it is a useful tool for studying matrices and operators. It relates to other

fields like operator theory, dilation theory, iterations, Krein space oper-

ators, numerical analysis, matrix norms, inequalities, Banach algebras,

C∗ algebras, purturbation theory, systems theory, quantum physics just

to mention a few [37],[14]. In regard of the many directions of active

research in numerical range and numerical radius, there has been much

interest in characterizing both real and complex operators. Meng [39]

worked on a condition that a normal operator must have a closed numer-

ical range. Meng showed that, if an operator is normal and its numerical

range is closed, then the extreme points of the numerical range are eigen-

values. Meng investigated the numerical range of normal operators on a

Hilbert space but not numerical range of posinormal operators. Toeplitz
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and Hausdorff showed that the numerical range of every bounded linear

operator is convex [25],[12]. This result is an important tool in the study

of numerical ranges of operators and it holds for all operators on Hilbert

spaces. Shapiro [47] proved the Toeplitz-Hausdorff theorem, the Folk the-

orem and determined the numerical range of a 2×2 matrix. It was proved

that the spectrum of an operator is contained in the closure of its numer-

ical range. Hildebrandt had obtained a result that for a bounded linear

operator T on a Hilbert space, a convex hull of σ(T ) can be obtained

by intersecting the closures of the numerical ranges of all the operators

similar to T [47]. In [47] Shapiro gave a short and complete proof to

Hildebrandt’s result. Shapiro investigated the numerical ranges of a two

dimensional Hilbert space especially 2 × 2 matrices but not numerical

ranges of posinormal operators on an infinite dimensional Hilbert space.

In [5] Bebiano investigated numerical ranges associated with operators

on an indefinite inner product space . Boundary generating curves, cor-

ners, shapes and computer generations of these sets were sudied. Bebaino

generalized the Murnaghan- Kippenhahn theorem for classical numerical

range. Bebiano [6]investigated the geometrical properties of the classical

numerical range and remarked that the classical numerical range of an

operator T if a singleton if and only if T is a scaler matrix, moreover,

W (T ) ⊆ R if and only if T is Hermitian. On computer generations he

studied algorithms and computer programs for generating the classical

numerical range and its generalizations. He presented an algorithm pro-

viding the boundary generating curve of the J- numerical range. Matlab

programs to plot this curve and draw an approximation for Wj(T ) were

developed. Stampfli [52],[53] investigated normality and the numerical
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range of an operator. The results of Donoghue [15], Hildebrandt, Meng

and Putnam were generalized by Stampfli. Stampfli studied the con-

vexity of a curve in the complex plane and remarked that if, at every

point, the curve and the origin lie on the same side of the support line,

the curve is said to be convex with respect to the origin. Embry [18]

studied the numerical range of an operator on a complex Hilbert space.

She worked on the property of linearity of the numerical range of opera-

tors on a complex Hilbert space, extreme points of the numerical range,

boundary points and the convexity property of the numerical range of

operators. Embry gave a generalization of Stampfli’s result [53] that if

an operator T is hyponormal and z is an extreme point (that is, z is

not in the interior of any line segment with endpoints in the numerical

range of T ), then z is an eigenvalue of the operator T . A proof of the

convexity of the numerical range of bounded operators popularly known

as the Toeplitz- Hausdorff theorem is also given. Embry investigated lin-

earity property and extreme points of the numerical range of complex

Hilbert space operators like normal and hyponormal operators but not

the numerical range of posinormal operators. Mecheri [37] studied the

numerical range of linear operators and gave a necessary and sufficient

condition for an operator to be convexoid. The numerical ranges of lin-

ear operators were used to prove that convexoid operators on a complex

Hilbert space are normaloid and Mecheri gave an example showing that

that the converse of this does not necessarily hold. In [4] Barraa stud-

ied the essential numerical range of elementary operators particularly the

essential numerical range of the restriction of an elementary operator to

the class of Hilbert- Schmidt. Johnson [29] characterized normal matri-
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ces in terms of the numerical range. A characterization of matrices for

which the numerical range coincides with the convex hull of the spectrum

is also given. Johnson made a key remark that the eigenvectors corre-

sponding to any eigenvalue occurring on the boundary of the numerical

range must be orthogonal to the eigenvectors corresponding to all other

eigenvalues. Guediri [20] investigated qualitative properties of the nu-

merical range of dual Toeplitz operators. Various classes of dual Toeplitz

operators were considered such as normal and quasinormal dual Toeplitz

operators. Guediri gave a complete description of the numerical ranges of

dual Toeplitz operators. The main qualitative properties of the numerical

ranges of dual Toeplitz operators were established. Guediri further shed

some light on the analog of Halmos’ fifth problem on the classification of

subnormal Toeplitz operators. However, Guediri characterized normality

and quasinormality and numerical ranges of some classes of dual Toeplitz

operators but not the numerical ranges of posinormal operators. In [13]

Ching- Kwong gave a characterization to the points in the numerical range

of a Hilbert space operator that lie on the boundary. It was shown that

the collection of such boundary points together with the interior of the

the convex hull of the spectrum of the Hibert space operator will then be

the numerical range of that operator. Moreover, Ching- Kwong showed

that such boundary points reveal a lot of information about the normal

operator. For instance, such a boundary point always associates with an

invariant (reducing) subspace of the normal operator. He further proved

that a normal operator acting on a separable Hilbert space cannot have

a closed strictly convex set as its numerical range. Further extension of

the results obtained to the joint numerical range of commuting operators
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was discussed. Ching- Kwong investigated and gave a characterization of

boundary points in the numerical range of a Hilbert space operator but

not the numerical range of a posinormal operator. Recently, Hwa-Long

and Pei had excursions in numerical ranges [24]. Anderson’s condition for

the numerical range of a finite matrix to equal a circular disc was studied.

They surveyed Holbrook’s conjecture on the numerical radius inequality

concerning the product of two community operators. Lastly Hwa-Long

and Pei investigated Williams and Crimmins’s structure theorem on an

operator when its numerical radius equals half of its norm. The excursion

concentrated on investigations concerning the classical numerical ranges

of operators and finite matrices but not numerical ranges of posinormal

operators. Numerical ranges for several Hilbert space operators have been

established but not for posinormal operators. In this study we shall in-

vestigate the numerical ranges of posinormal operators.

Spectral theory of linear operators on Hilbert spaces is a pillar in sev-

eral developments in mathematics, physics and quantum mechanics. Its

concepts like the spectrum of a linear operator, eigenvalues and vectors,

spectral radius, spectral integrals among others have useful applications

in quantum mechanics, a reason why there is a lot of current research

on these concepts and their generalizations. In [3],[33] spectral theory

is described as a rich and important theory as it relates perfectly with

other areas including measure and integration theory and theory of ana-

lytic functions. Spectral theory of linear operators on a Hilbert space was

founded by Hilbert [59]. Weyl advanced the spectral theory for singu-

lar second order differential equations [17][26]. In [44] Rhaly introduced a

posinormal operator, showed a characterization of posinormality and gave
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some spectral properties of posinormal operators. The relationship be-

tween a hyponormal operator and a posinormal operator was established.

Rhaly further introduced a superclass of the posinormal operators and

determined sufficient conditions for this superclass to be posinormal and

hyponormal [45]. However, Rhaly in his work has not characterized nu-

merical ranges and spectra of posinormal operators, and the relationship

between the numerical range and the spectrum of posinormal operators

has not been established. In [27] Itoh gave a different characterization

of posinormal operators complementing Rhaly’s. Lee [34] studied powers

of p-Posinormal operators and showed that if T is p- Posinormal then

T n is also p-Posinormal for all positive integer n. Duggal and Kubrusly

[17] investigated Weyl’s theorems for posinormal operators. They proved

that posinormal operators, both totally posinormal operators and condi-

tionary totally posinormal operators, satisfy the Weyl’s theorem. Duggal

and Kubrusly gave a remark that the restriction of a posinormal operator

to an invariant subspace is again posinormal[7]. In [38] Mecheri studied

the generalized Weyl’s theorem for posinormal operators and proved that

the generalized Weyl’s theorem holds for f(T ) if T is conditionally to-

tally posinormal or totally posinormal, where f is a function analytic in

an open neighbourhood of σ(T ). A definition of posinormality is given

equivalent to the one given by Rhaly, that is, an operator T is said to be

posinormal if there exists a co-isometry V ∗ and a positive bounded Hilbert

space operator P such that T = T ∗PV ∗. It was noted that the large class

of posinormal operators contains other classes such as; the classes con-

sisting of hyponormal operators, M- hyponormal operators and dominant

operators. Rhaly [46] introduced a superclass of the posinormal operators
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which he referred to as Supraposinormal operators. He determined suf-

ficient conditions for a supraposinormal operator to be posinormal and

hyponormal. Rhaly [46] gave a brief proof of a well known result, the

hyponormality of Ck (the generalized cesàro operator of order one) for

k ≥ 1. Rhaly established a connection between this superclass and some

recently published sufficient conditions for a lower triangular factorable

matrix to be a hypornomal bounded linear operator on l2. It was shown

that all injective unilateral weighted shifts are supraposinormal. Kos-

tov and Todorov [30] introduced a class of operators called polynormially

posinormal operators, which is naturally extending the classes of hyponor-

mal and posinormal operators. They constructed a generating family of

eigendistributions, unitary invariants and developed a functional model

for this class. It was noted that by extending the class of hyponormal

operators to the class of operators possessing the property ImT ⊂ ImT ∗,

posinormal operators are obtained. The class of polynormially posinor-

mal operators includes all finite- dimensional and nilpotent operators and

all posinormal operators making it larger than the class of M- hyponor-

mal operators. In [49] spectral continuity of a (p, k)-Quasiposinormal

operator and (p, k)- Quasihyponormal operator is investigated. It was

proved that the (p, k)-Quasiposinormal operator is a pole of the resol-

vent set of the adjoint of the operator. It was also proved that if {Tn}

is a sequence of operators in the class of (p, k)-Quasiposinormal oper-

ators which converge in the operator’s norm topology of an operator T

in the same class, then the functions spectrum, Weyl spectrum, Browder

spectrum and essential surjectivity spectrum are continuous at T . In [50]

they proved that if T is (p, k)- quasiposinormal and λ̄ ∈ π00(T
∗), then T̃
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is a pole of the resolvent set of T ∗. They showed that if the spectrum is

continuous at T ∗ ∈ B(H) then the spectrum is continuous at T . They

further proved that if {Tn} is a sequence in (p, k)- quasiposinormal which

converges in norm to T , then its spectrum is continuous at T and T ∗ is

a point of continuity of σea. Senthilkumar and Kiruthika in their work

[49],[50], investigated continuity property of (p, k)- Quasiposinormal and

(p, k)-Quasihyponormal operators and not the spectrum of posinormal

operators. Some properties of posinormal operators like continuity and

linearity have been investigated but its spectrum has not been fully inves-

tigated. In this study we shall investigate and characterize the spectrum

of posinormal operators in an infinite dimensional complex Hilbert space.

Shapiro [47] investigated the relationship between the numerical range

and the spectrum. Major points on this topic were: containment of the

spectrum in the closure of the numerical range of an operator and the

assertion that the intersection of the closures of the numerical ranges of

all operators similar to an operator T gives precisely the convex hull of

the of the spectrum of the operator T . Shapiro further gave an impor-

tant proposition that the numerical range of an operator T contains all

the eigenvalues of T . It was proved that the convex hull of the spec-

trum of an operator lies in the closure of the numerical range and that

the numerical range is always convex (the Toeplitz- Hausdorff theorem).

Shapiro’s result obtained a complete description of the numerical ranges

of 2× 2 matrices; they are (possibly degenerate) elliptical discs with foci

at the eigenvalues of the matrix. Shapiro investigated the relationship

between the numerical range and spectrum of other operators but not

that of posinormal operators. Meng [39] gave an important remark that
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if an operator T in a complex Hilbert space is normal, then the closure

of the numerical range of the operator T is the smallest closed convex

set containing the spectrum of T and the numerical range of the normal

operator T is closed, the extreme points of the numerical range of T are

eigenvalues. In [56] utility of quadratic numerical ranges and block nu-

merical ranges were compared by Tretter. The convexity of the numerical

range was found to be a useful property in the localization of the spec-

trum. Moreover, Tretter [56] introduced an alternative and sure method

of localization of the spectrum by use quadratic numerical range. Tretter

[56] investigated localization of the spectrum, description and structure

of essential spectrum, block diagnalization, invariant subspaces, and the

structure and utility of quadratic numerical ranges but not the numeri-

cal range of posinormal operators. In this study we have determined the

numerical range of a posinormal operator and its spectrum. Moreover

we have established the relationship between the numerical range and

spectrum of a posinormal operator.

1.2 Basic concepts

In this section, we state the basic definitions and concepts on an opera-

tor, self- adjoint operator, normal operator, positive operator, posinormal

operator, norm, inner product, numerical range, numerical radius, spec-

trum, spectral radius, which are useful in our study.

Definition 1.1 (23). Let V , W be vector spaces over K.

(i). A map T : V → W is called a linear tranformation if, for all x, y ∈ V
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and α, β ∈ K, T (αx+ βy) = αT (x) + βT (y).

(ii). If V = W then, a structure preserving map T : V → V is called a

linear operator if, for all x, y ∈ V and α, β ∈ K, T (αx + βy) = αT (x) +

βT (y).

Definition 1.2 (31). A norm is a nonnegative real valued function taking

∥.∥ : V → R such that ∀ x, y ∈ V and α ∈ K the following axioms are

satisfied:

(i). ∥x∥ ≥ 0.

(ii). ∥x∥ = 0, if and only if x = 0.

(iii). ∥αx∥ = |α|∥x∥.

(iv). ∥x+ y∥ ≤ ∥x∥∥y∥

The ordered pair (V, ∥.∥) is called a normed space.

Definition 1.3 (31). A Banach space is a complete normed space.

Definition 1.4 (23). An inner product on a vector space V is a map

⟨., .⟩ : V X V → K such that ∀ x, y, z ∈ V and λ ∈ K ; :

(i). ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0, if and only if x = 0.

(ii). ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩.

(iii). ⟨λx, y⟩ = λ⟨x, y⟩.

(iv). ⟨x, y⟩ = ⟨y, x⟩.

The ordered pair (V, ⟨., .⟩) is called an inner product space.
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Definition 1.5 (23). A Hilbert space H is a complete inner product

space.

Remark 1.6 (54). Every Hilbert space is a Banach space but the converse

is not necessarily true. The following are examples of Hilbert spaces:

Examples of Hilbert spaces

1. Cn; an n-dimensional complex space is a Hilbert space whose norm is

defined by:

⟨x, y⟩ =
n∑

k=1

xkyk, ∥x∥ = (
n∑

k=1

|xk|2)
1
2 .

2. l2; space of converging sequences is a Hilbert space whose norm is de-

fined by

⟨x, y⟩ =
∞∑
k=1

xkyk, ∥x∥ = (
∞∑
k=1

|xk|2)
1
2 .

Definition 1.7 (31). Let H be a Hilbert space and T : H → H be a

linear operator. Then the operator T ∗ is called the adjoint of T defined

by ⟨Tx, y⟩ = ⟨x, T ∗y⟩ for all x, y ∈ H

Definition 1.8 (31). Let H be a Hilbert space. An operator T : H → H

is called:

(i) Self adjoint/ Hermitian if T = T ∗

(ii) Normal if T ∗T = TT ∗, that is, if T commutes with its adjoint.

(iii) Unitary if T ∗T = TT ∗ = I

Definition 1.9 (31). A positive operator T (denoted as T ≥ 0) is a self

adjoint operator such that ⟨Tx, x⟩ ≥ 0 for all x ∈ H.
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Definition 1.10 (44). Let T ∈ B(H). T is said to be posinormal if there

exists a positive operator P ∈ B(H) such that TT ∗ = T ∗PT ; where P is

called the interrupter. P (H) denotes the set of all posinormal operators

on H. T is said to be coposinormal if T ∗ is posinormal.

Definition 1.11 (31). Spectrum of an operator T ∈ B(H) is the set

σ(T ) = {λ : T − λI is not invertible}. λ ∈ C is an eigenvalue of T if

there exist x ∈ H \{0} such that Tx = λx. x ̸= 0 is called the eigenvector

of T corresponding to λ .

Definition 1.12 (31). The resolvent set of an operator T is the com-

pliment of the spectrum σ(T ) in the complex plane C. It is denoted by

ρ(T ).

Definition 1.13 (31). Spectral radius γ(T ) of an operator T on H is

given by :

γ(T ) := sup{|λ|, λ ∈ σ(T )}.

Definition 1.14 (51). Numerical range W (T ) of an operator T is the

subset of the complex number C given by: W (T ) = {⟨Tx, x⟩, x ∈ H, ∥x∥ =

1} with the following properties:

(i) W (αI + βT ) = α + βW (T ) ∀ α, β ∈ C

(ii) W (T ∗) = {λ, λ ∈ W (T )} where T ∗ is the adjoint operator of T .

(iii) W (U∗TU) = W (T )U . for any unitary operator U .

Remark 1.15 (56). An important use ofW (T ) is to bound the spectrum

σ(T ) of the operator T . This is important in establishing the relationship

between the numerical range and spectrum of posinormal operator.
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Definition 1.16 (51). Numerical radius r(T ) of an operator T on H is

given by :

r(T ) = sup{|λ| : λ ∈ W (T )}

= sup{| < Tx, x > |, ∥x∥ = 1}

with the following properties :

(i) r(|T |) = ∥T∥.

(ii) r(T ∗T ) = r(TT ∗).

(iii) r(UTU∗) = r(T ).

Definition 1.17 (31). An operator T : H → H is said to be bounded if

there exist a constant M > 0 such that: |Tx| ≤M |x|.

Definition 1.18 (31). Two vectors x, y ∈ H are called orthogonal if

⟨x, y⟩ = 0. It is denoted by x ⊥ y

Definition 1.19 (31). A linear functional on a vector space V is an

operator T : V → V, which satisfies the following properties

1. T (x+ y) = T (x) + T (y) ∀ x, y ∈ V and

2. T (αx) = αT (x) , ∀ x, y ∈ V and α ∈ K.

1.3 Statement of the problem

Numerical ranges and spectra of Hilbert space operators like normal, hy-

ponormal and self- adjoint operators have been characterized. However,

for posinormal operators, other properties like continuity and linearity
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have been studied but not much has been investigated on the numeri-

cal range and the spectrum of posinormal operators. Therefore in this

study, we have investigated the numerical range of posinormal operators,

the spectrum of posinormal operators and lastly we have established the

relationship between the numerical range and spectrum of a posinormal

operator.

1.4 Objectives of the study

The objectives of the study have been to:

(i). Investigate numerical ranges of posinormal operators.

(ii). Investigate spectra of posinormal operators.

(iii). Establish the relationship between the numerical range and spec-

trum of a posinormal operator.

1.5 Research questions

(i). What are the numerical ranges of posinormal operators?

(ii). What are the spectra of posinormal operators?

(iii). Is there a relationship between the numerical range and spectrum

of a posinormal operator?
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1.6 Significance of the study

Hilbert space operators have been investigated by many researchers be-

ing motivated by the needs of operator theory, functional analysis and

quantum theory. The numerical range and spectrum of posinormal oper-

ators have not been exhaustively investigated. The numerical ranges and

spectra of posinormal operators have exemplary applications especially

in quantum information theory, particularly, to optimize minimal output

entropy of quantum channel, to detect entanglement using positive maps

and for local distinguishability of unitary operators.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

In this chapter we review related literature for numerical ranges and spec-

tra of posinormal operators and the relationship between numerical range

and the spectrum of posinormal operators. Various studies have been car-

ried out on the numerical range of normal operators, numerical range of

positive operators, the spectrum of normal, self-adjoint, and positive op-

erators.

2.2 Numerical Ranges

The concept of the numerical range (also called a field of values) since

its introduction by Toeplitz [55], has remained to be a useful tool for

studying matrices and operators. This has motivated extensive research

on its properties and their generalizations. Toeplitz [55] proved that the

numerical range of a matrix contains all its eigenvalues and the boundary
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of the numerical range is always a convex curve. Hausdorff [23] showed

that the numerical range for general bounded linear operators is convex

. Hausdorff further proved that for T ∈ B(H) and H a complex Hilbert

space, the spectrum of T is contained in the closure of the numerical range

of T (that is, σ(T ) ⊂ W (T )). These two mathematicians developed the

Toeplitz-Hausdorff theorem:

Theorem 2.1 (51, Theorem 3.2). {Toeplitz-Hausdorff theorem} The nu-

merical range of every bounded linear operator T on a Hilbert space is

convex. That is, for all T ∈ B(H), W (T ) is convex.

Proof. See [47] and [51].

This was true for all operators. Thus the convexity of the numerical range

holds for posinormal operators. The theorem is the most essential result

about numerical ranges and has many applications.

In [47] Shapiro proved the Toeplitz-Hausdorff theorem. The numerical

range for 2×2 matrices was determined. Shapiro proved the Folk theorem:

Theorem 2.2 (51, Theorem 3.4). {Folk theorem} If λ ∈ W (T ) is a

boundary point at which ∂W (T ) has infinite curvature then λ is an eigen-

value of T .

Proof. See [47] and [51].

In [47] the numerical ranges of operators on two dimensional Hilbert space

were characterized. Shapiro further worked on the Ellipse Theorem and

gave a complete proof of it.
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Theorem 2.3. {The Ellipse theorem} If T is a linear transformation on

C2, then W (T ) is a elliptical disc.

Proof. See [47].

Shapiro investigated numerical ranges of operators on two dimensional

Hibert space but not the numerical range of posinormal operators.

Hwa-Long and Pei [24] had excursions in numerical ranges. Anderson’s

condition for the numerical range of a finite matrix to equal a circular

disc was studied. They surveyed Holbrook’s conjecture on the numeri-

cal radius inequality concerning the product of two community operators.

Lastly Hwa-Long and Pei investigated Williams and Crimmins’s structure

theorem on an operator when its numerical radius equals half of its norm.

The excursion concentrated on investigations concerning the classical nu-

merical ranges of operators and finite matrices. The following are their

main results:

Theorem 2.4 (24, Theorem 3.1). If T is a n×n matrix such that W (T )

is contained in a closed elliptic disc E and there boundaries ∂W (T ) and

∂E intersect at more than n points, then W (T ) = E.

Proof. See [24].

Theorem 2.5 (24, Theorem 3.4). Let T be an n×n (n ≥ 3) matrix. Then

(a). ∂W (T ) can contain at most n− 2 arcs of any ellipse, and
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(b). If W (T ) contains an elliptic disc E and ∂W (T ) and ∂E intersect at

more than n points, then ∂W (T ) contains an arc of ∂E. In this case,

both numbers ”n− 2” and ”n” are sharp.

Proof. See [24].

Theorem 2.6 (24, Theorem 4.1). If T and S doubly commute, then

W (TS) ≤ min{∥T∥W (S),W (T )∥S∥}

In particular if this is the case if T or S is normal and TS = ST .

Proof. See [24].

Theorem 2.7 (24, Theorem 5.1). Let T be an operator on H such that

∥Tx∥ = ∥T∥ for some unit vector x ∈ H. If W (T ) = 1 and ∥T∥ = 2,

then T is unitarily equivalent to an operator of the form

 o 2

0 0

 ⊕ T

and W (T ) = D

Proof. See [24].

While studying normality and the numerical range of an operator Stampfli

[52] generalized results of Donoghue [16], Hildebrandt, Meng and Putnam

[42]. He studied the convexity of a curve in the complex plane and re-

marked that if, at every point, the curve and the origin lie on the same

side of the support line, the curve is said to be convex with respect to the

origin. The main results are as below:

Theorem 2.8 (52, Theorem 1). Let σ(T ) lie on a curve C ∈ C. Then T

is normal if and only if W (T±1) ⊂ Σ(T±1).
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Proof. See [52].

Theorem 2.9 (52, Theorem 2). Let σ(T ) lie on a smooth convex curve.

If (1) W (T ) ⊂ Σ(T ) and (2) W [(T − zI)−1] ⊂ Σ[(T − zI)−1], for z not

a member of σ(T ), then T is normal.

Stampfli studied numerical ranges of normal operators but not numerical

ranges of posinormal operators.

In [18] Embry studied the numerical range of an operator on a complex

Hilbert Space and came up with the following results:

Theorem 2.10 (18, Theorem 1). If z ∈ W (A), then YM2 = M2 ⊕M2

and

(i). z is an extreme point of W (A) if and only if M2 is linear;

(ii). if z is a non extreme boundary point of W (A), then YM2 is a closed

linear subspace of X and YM2 = ∪{Mw : w ∈ L} , where L is the line of

support of W (A), passing through z. In this case YM2 = X if and only

if W (A) ⊂ L.

Proof. See [18].

Theorem 2.11 (18, Theorem 2). Let z ∈ W (A) and Kz = ∩ Max-

imal linear subspaces of M2. If z is a boundary point of W (A), let

N = ∪{Mw|w ∈ L}, where L is a line of support for W (A), passing

through z.

(i). If z is a boundary point of W (A), x ∈ Kz and Ax ∈ N , then Ax = zx

and A∗x = z∗x. Conversely, if Ax = zx and A∗x = z∗x, then x ∈ Kz.
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(ii). If W (A) is a convex body and z is in the interior of W (A), Kz ≡

{x|Ax = zxandA∗x = z∗x}.

Proof. See [18].

Embry investigated numerical ranges of other Hilbert space operators but

not the numerical range of posinormal operators.

Skoufranis [51] also proved the Toeplitz-Hausdorff theorem and the Folk

theorem. Skoufranis studied numerical ranges and developed various no-

tions of numerical ranges of operators. These are the main results:

Theorem 2.12 (51, Theorem 1.7). Let T ∈ B(H) be a normal operator.

Then r(T ) = ∥T∥.

Proof. See [51].

Skoufranis studied numerical ranges of Hilbert space like normal opera-

tors, self adjoint and unitary operators but not posinormal operators.

In [4] Barraa studied the numerical range of elementary operators and

gave some results on the essential numerical range of the restriction of an

elementary operator to the class of Hilbert- Schmidt. The following are

the main results obtained:

Lemma 2.13 (4, Lemma 2.1). Let T ∈ B(H). Each of the following

conditions is necessary and sufficient in order that λ ∈ Ve(T )

(1) ⟨Txn, xn⟩ → λ for some sequence {xn} of unit vectors such that xn → 0

weakly.
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(2) ⟨Ten, en⟩ → λ for some orthonormal sequence {en}.

Theorem 2.14 (4, Theorem 2.2). Let H,K be two separable Hilbert

spaces and A = (A1, ...., Ap), B = (B1, ...., Bp) two p- tuples with Ai ∈

B(H) and Bi ∈ B(K) for i = 1, ......, p. Then Co[(We(A) ◦ W (B)) ∪

(W (A) ◦We(B))] ⊆ Ve(R2, A,B).

Proof. See [4].

Lemma 2.15 (4, Lemma 3.1). Let A be a non-negative, self-adjoint op-

erator and AB = BA. Then Ve(AB) ⊆ Ve(A)Ve(B).

From the above literature review on numerical ranges it is clear that

numerical ranges for various operators on a Hilbert space have been es-

tablished but not for posinomal operators.

2.3 Spectrum

The study of the spectra of linear bounded operators on a Hilbert space

has an extensive history. In [44] Rhaly introduced the concept of a posi-

normal operator. Areas of concern were self adjoint operators, normal

operators, hyponormal operators, cohyponormal operators, seminormal

and subnormal operators of all bounded linear operators on a Hilbert

space H. He characterized an operator T ∈ B(H), which is both pos-

itive (⟨Tx, x⟩ > 0) and normal (TT ∗ = T ∗T ). If T ∈ B(H) is to be

normal and positive, there must exist an interupter P ∈ B(H) such that
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TT ∗ = T ∗PT , moreover T must be self adjoint. This result defines posi-

normality. The following theorems by Rhaly summarizes the most useful

results he obtained:

Theorem 2.16 (44, Theorem 2.1). For T ∈ B(H) the following state-

ments are equivalent:

(1) T is posinormal

(2) RanT j RanT ∗

(3) TT ∗ 5 λ2T ∗T for some λ = 0; and

(4) There exists a S ∈ B(H) such that T = T ∗S. Moreover if [1.],[2.],[3.]

and[4.] hold, there is a unique operator S such that:

(a) ∥S∥2 = inf[µ : TT ∗ 5 µT ∗T ];

(b) KerT = KerS and

(c) RanS j (RanT )−

Theorem 2.17 (44, Theorem 3.1). Every invertible operator is posinor-

mal.

Proof. See [44].

In [27] Itoh gave a characterization of posinormal operators different from

Rhaly’s:

23



Theorem 2.18 (27, Theorem 2). An operator T is posinormal if, and

only if, there exists λ > 0 such that | T (T | x, y) |≤ λ∥ | T | x∥∥ | T | y∥

for all x, y ∈ H.

Proof. See [27]

Itoh showed that if an operator T is posinormal then it is M-paranormal.

Itoh came up with a class of operators which he called P-Posinormal op-

erators, (p − P (H)), gave a characterization of P-posinormal operators

and further proved that if an operator T is P-posinormal, then it is also

M-paranormal. Itoh did not investigate the spectrum of posinormal op-

erators.

In [50] they studied the (p,k)- quasiposinormal operators in relation to

the spectral mapping theorem for Weyl spectrum, σw(T ). An operator T

is said to be (p, k)- quasiposinormal if T ∗k(c2(T ∗T )p− (TT ∗)p)T k ≥ 0 for

a positive integer 0 < p ≤ 1, c > 0 and a positive integer k. They defined

Weyl spectrum by

σw(T ) = {λ ∈ C : T − λ is not Weyl }.

They obtained the following important results:

(i) Weyl’s theorem holds for (p, k)- quasiposinormal operator T for

c > 0, that is, σ(T )\σw(T ) = π00(T ) where π00(T ) = {λ ∈ isoσ(T ) :

0 < α(T − λ) <∞}.

(ii) If T is a (p, k)- quasiposinormal operator, then σ(T )−{0} = σe(T )−

{0} where σe(T ) is the compression spectrum of T .
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(iii) Weyl’s theorem holds for T if its adjoint T ∗ is a (p, k)- quasiposonor-

mal operator.

In [49] spectral continuity of (p, k)- quasiposinormal operator and (p, k)-

quasihyponormal operator is investigated. They proved that if T is (p,

k)- quasiposinormal and λ̄ ∈ π00(T
∗), then T is a pole of the resolvent

set of T ∗. They showed that if the spectrum is continuous at T ∗ ∈ B(H)

then the spectrum is continuous at T . They further proved that if {Tn}

is a sequence in (p, k)- quasiposinormal which converges in norm to T ,

then its spectrum is continuous at T and T ∗ is a point of continuity of

σea.

Duggal and Kubrusly [17] studied Weyl’s theorems for posinormal opera-

tors. They worked on Conditionally Totally Posinormal (CTP for short)

operators and Totally Posinormal (TP for short) operators. A posinormal

operator T is said to be Conditionally totally posinormal (T ∈ CTP ) if

to each complex number λ there corresponds a positive operator Pλ such

that |(T − λI)∗|2 = |P
1
2
λ (T − λ)|2 for all λ and T ∈ B(H) is said to be to-

tally posinormal (T ∈ TP ) if to each complex number λ there corresponds

a positive operator P such that |(T−λI)∗|2 = |P 1
2 (T−λ)|2 for all λ. Dug-

gal and Kubrusly remarked that the restriction of a posinormal operator

to an invariant subspace is again posinormal. A definition of posinormal

operators equivalent to that of Rhaly was given [7] that T ∈ B(H) is posi-

normal if there exists a co- isometry V ∗ ∈ B(H) and a positive operator

P ∈ B(H) such that T = T ∗PV ∗. Duggal and Kubrusly observed that

the large class of posinormal operators contains other classes such as the

classes consisting of hyponormal operators (T ∈ B(H) : TT ∗ ≤ T ∗T ); M-

hyponormal operators (T ∈ B(H) : |(T−λI)∗|2 ≤M |(T−λI)|2) for some
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real number M > 0 and dominant operators (T ∈ B(H) : |(T − λI)∗|2 ≤

Mλ|(T − λI)|2) for some real number Mλ > 0 and all complex numbers

λ. The following theorems give the main results they obtained:

Theorem 2.19 (17, Theorem 3.1). Let T ∈ TP . Then

(1) f(T ) and f(T ∗) satisfy Weyl’s theorem for every f ∈ H(σ(T )).

(2) T ∗ satisfies a- Weyl’s theorem.

(3) If T ∗ has the single valued extension property (SVEP), then T satisfies

a- Weyl’s theorem.

In [46] Rhaly introduced a superclass of the posinormal operators and gave

sufficient conditions for an operator in this superclass to be posinormal

and hyponormal. A clear proof of hyponormality of the generalized Cesàro

operator of order one (Ck) was given. The following three theorems gives

a summary of Rhaly’s main results:

Theorem 2.20 (46, Theorem 1). Suppose A ∈ B(H) satisfies AQA∗ =

A∗PA or positive operators P,Q ∈ B(H).

(a) If Q has dense range, then A is supraposinormal and KerA ⊂ KerA∗.

(b) If P has dense range, then A is supraposinormal and KerA∗ ⊂ KerA.

(c) If Q is invertible, then the supraposinormal operator A is posinormal.

(d) If P is invertible, then the supraposinormal operator A is coposinormal.

(e) If P and Q are both invertible, then A is both posinormal and coposi-

normal with KerA = KerA∗ and RanA = RanA∗.
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Proof. See [46].

Theorem 2.21 (46, Theorem 2). Assume A− λ is supraposinormal for

distinct real values λ = 0, r1 and r2 and assume that the same interrupter

pair (Q,P ) serves A − λ in each of those three cases. Then Q = P and

Ker(A− λ) = Ker(A− λ)∗ when λ = 0, r1 and r2.

Proof. See [46].

Theorem 2.22 (46, Theorem 3). If A ∈ B(H) is totally supraposinormal

and the same two positive operators Q,P ∈ B(H) form an interrupter pair

(Q,P ) for A− λ for all complex numbers λ, then Q = P ; it follows that

Ker(A− λ) = Ker(A− λ)∗ for all λ.

Proof. See [46].

Rhaly investigated continuity and invertibility properties of posinormal

operators and gave sufficient conditions for an operator to be posinormal

but did not investigate the spectrum of posinormal operators. Evidently

spectral properties for several Hilbert space operators have been studied

and a great deal of generazations given but not for posinormal operators.

2.4 Relationship between numerical ranges

and the spectrum of operators

Meng [39] remarked that if T is normal, the closure ofW (T ) is the smallest

closed convex set containing the spectrum of T and that if T is normal and
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W (T ) is closed, the extreme points ofW (T ) are eigenvalues. Hildebrandt

had come up with an important result that, for a bounded linear operator

T on a Hilbert space, you get the convex hull of σ(T ) by intersecting

the closures of the numerical ranges of all the operators similar to T

[2]. Shapiro [47] gave a short and complete proof to the Hildebrandt’s

theorem. The well known results [21] that r(T ) ≤ ∥T∥ for any operator

T on a Hilbert space, and that the spectral radius is a similarity invariant

were used to show that r(T ) ≤ inf{∥V TV −1∥ : V is invertible on H}

thus suggesting a connection between the spectrum and the numerical

range. Shapiro proved the result that the spectrum of an operator lies

in the closure of its numerical range. The following theorems give useful

results:

Theorem 2.23 (47, Theorem 5.1). If T is a bounded linear operator on

a Hilbert space H, then T is contained in the closure of the numerical

range of T .

Proof. See [47].

Proposition 2.24 (47, Proposition 1.1). W (T ) contains all of the eigen-

values of T .

Shapiro investigated the relationship between the numerical range and

spectrum of normal operators but not posinormal operators.

In [28] matrices for which the numerical range coincides with the con-

vex hull of the spectrum were investigated. A key observation was made

that the eigenvectors corresponding to any eigenvalue occurring on the
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boundary of the numerical range must be orthogonal to eigenvectors cor-

responding to all other eigenvalues. The following theorems are some of

the results obtained by Johnson:

Theorem 2.25 (29, Theorem 1). Suppose α ∈ ∂W (A)
∩
σ(A) and Ax =

ax, x∗x = 1 we have

(i) If α has algebraic multiplicity m in σ(A), then the dimension of the

eigen space for α is m;

(ii) For any α ̸= λ ∈ σ(A), Ay = λy, y∗y = 1, it follows that x∗y = 0;

and

(iii) A is unitarily equivalent to αI ⊕ B where α is not a member of

σ(B).

Proof. See [29].

Theorem 2.26 (29, Theorem 2). A is normal if and only if A is unitarily

equivalent to A1 ⊕ ........ ⊕ Ak, where Ai satisfies the boundary property,

i = 1, .....k.

Proof. See [29].

Theorem 2.27 (29, Theorem 3). We have W (A) = Co(σ(A)) if and only

if A is normal or A is unitarily equivalent to

 A1 0

0 A2

 , where A1 is

normal and W (A2) ⊆ W (A1).

Proof. See [29].
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In describing the relationship between the numerical range and spec-

trum of linear operators Skoufranis [51] obtained the following results:

Theorem 2.28 (51, Theorem 2.9). Let T ∈ B(H). Then σ(T ) ⊆ W (T ).

Proof. See [51].

Theorem 2.29 (51, Theorem 2.11 ). Let T ∈ B(H) be a normal operator.

Then W (T ) = Conv(σ(T )).

Proof. See [51].

Theorem 2.30 (51, Theorem 5.10). Let T ∈ B(H). Then σe(T ) ⊆

We(T ).

Proof. See [51].

Theorem 2.31 (51, Theorem 5.11). Let T ∈ B(H) be a normal operator

on an infinite dimensional Hilbert space H. Then We(T ) = Conv(σe(T ).

Proof. See [51].

Skoufranis investigated the relationship between the numerical range and

spectrum of normal operators but not the relationship between the nu-

merical range and spectrum of a posinormal operator.

In [56] Tretter worked on localization of the spectrum, description of the

essential spectrum, investigation of its structure, block diagnalization and

invariant subspaces. Utility of numerical ranges and quadratic numerical

ranges were compared. Tretter noted that the convexity of the numerical
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range is a useful property for localization of the spectrum since the spec-

trum lies in half plane. Tretter introduced an alternative way of localizing

the spectrum by use of quadratic numerical range.

From the literature review we see that the relationship between the spec-

trum and the numerical range of normal and linear operators has been es-

tablished but the relationship between the spectrum and numerical range

of posinormal operators has not been established. In this study we shall

establish the relationship between the numerical range and the spectrum

of a posinormal operator.
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Chapter 3

RESEARCH

METHODOLOGY

3.1 Introduction

For a successful completion of this research, background knowledge of

Functional analysis, the operator theory, especially normal operators, self-

adjoint operators, hyponormal operators on a Hilbert space, numerical

range and the spectrum of operators on a Hilbert space is vital. We

have stated some known fundamental principles which were useful in our

research. The methodology involved the use of known inequalities and

techniques like Cauchy -Schwartz inequality and the polarization iden-

tity.Lastly, we have used the technical approach of tensor products in

solving the stated problem.
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3.2 Fundamental Principles

The following fundamental principles have been useful in our work:

Theorem 3.1 (51, Theorem 3.2). {The Toeplitz- Hausdorff Theorem}

The numerical range of every bounded linear operator T is convex.

Theorem 3.2 (51, Theorem 3.4). { The Folk theorem} Let T ∈ B(H) be

such that λ ∈ δW (T ). If no closed disc of W (T ) contains λ, then λ is an

eigenvalue of T .

Theorem 3.3. Let T ∈ B(X,X). If ∥T∥ < 1 then (I − T )−1 exists as a

bounded operator on X and (1− T )−1 =
∑∞

j=0 T
j = I + T + T 2 + .....

Theorem 3.4. The resolvent set ρ(T ) of a bounded linear operator T on

a complex Banach space X is open, implying that the spectrum of T is

closed.

Theorem 3.5. The spectrum σ(T ) of a bounded self-adjoint linear oper-

ator T : H → H on a complex Hilbert space H is real.

Theorem 3.6. Let T ∈ B(H) be a self adjoint operator. Then the nu-

merical radius of T is equal to the norm of T .

Theorem 3.7. Let T ∈ B(H) be a normal operator. Then r(T ) = ∥T∥.

3.3 Known Inequalities and Techniques

We have used the following inequality and identity in our work:

Definition 3.8. Cauchy - Schwarz inequality; If V is an inner product

space and ∥v∥ =
√

⟨v, v⟩ ∀ v ∈ V then: |⟨x, y⟩| ≤ ∥x∥ ∥y∥ ∀ x, y ∈ V
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Theorem 3.9. Polarization Identity; Let X be an inner product

space, then for arbitrary x, y ∈ X, ⟨x, y⟩ = 1
4
[∥x + y∥2 − ∥x − y∥2 +

i∥x+ iy∥2 − i∥x− iy∥2].

Our technical approach involved use of tensor product of operators. This

helped us to study the properties of posinormal operators. The following

background knowledge is important in this research:

Tensor product of operators

For every pair of linear operators T on V and S on W , there exists a

unique linear operator T ⊗ S on V ⊗ W such that (T ⊗ S)(v ⊗ w) =

(Tv)(Sw).

We use the theory of tensor product that will be useful in investigating

the numerical ranges and spectra of posinormal operators, as well as, in

establishing the relationship between the numerical range and spectrum

of a posinormal operator.

Tensor product of Hilbert spaces

Construction

Let H and K be Hilbert spaces over C2. Let H ⊗alg K denote the tensor

product as vector spaces, i.e

H ⊗alg K = F/N,

where F is the vector space freely generated by H × K and N is the

subspace spanned by elements of the form

(αv1 + v2, w)− α(v1, w)− (v2, w), (v, αw1 + w2)− α(v1w1)− (v, w2)

34



where v, v1, v2 ∈ V , w,w1, w2 ∈ W and α ∈ K. The scalar products ⟨., .⟩H

on H and ⟨., .⟩K on K define a mapping ŝ : F × F → K by

ŝ(φ, ψ), ((φ′, ψ′)) := ⟨φ, φ′⟩H⟨ψ, ψ′⟩K

and extension by antilinearity in the first argument and linearity in the

second argument, that is

ŝ(
∑

i αi(φi, ψi),
∑

j α′j(φ′j, ψ′j)) =
∑

ij α
∗
iα′j⟨φ, φ′j⟩H⟨ψ, ψ′j⟩K .

Antilinearity of ⟨., .⟩H and ⟨., .⟩K in the first argument implies

ŝ(N × F ) = 0 : ŝ(αφ1 + φ2, ψ)− α(φ1, ψ)− (φ2, ψ), (φ′, ψ′)

= ⟨αφ1 + φ2, φ′⟩H⟨ψ, ψ′⟩K − α∗⟨φ1, φ′⟩H⟨ψ, ψ′⟩K − ⟨φ2, φ′⟩H⟨ψ, ψ′⟩K

= 0,

and similarly for the other type of spanning vectors. By an analogous

argument, linearity of ⟨., .⟩H and ⟨., .⟩K in the second argument implies

ŝ(F ×N) = 0. It follows that ŝ descends to a mapping

⟨., .⟩ : (F/N)× (F/N) ≡ (H ⊗K)× (H ⊗K) → C, ⟨[x], [y]⟩ := ŝ(x, y),

which is antilinear in the first argument and linear in the second argument.

We compute

⟨(φ⊗ ψ), (φ′ ⊗ ψ′)⟩ = ⟨[(φ, ψ)], [(φ′, ψ′)]⟩

= ŝ((φ, ψ), (φ′, ψ′))

= ⟨φ, φ′⟩H⟨ψ, ψ′⟩K .
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We claim that ⟨., .⟩ is a scalar product and

1. ⟨[x], [y]⟩ = ⟨[y], [x]⟩∗: by (anti)linearity, it suffices to check this for pure

tensor products,

⟨φ⊗ ψ, φ′ ⊗ ψ′⟩ = ⟨φ, φ′⟩H⟨ψ, ψ′⟩K

= ⟨φ′, φ⟩∗H⟨ψ′, ψ⟩∗K

= ⟨φ′ ⊗ ψ′, φ⊗ ψ⟩∗;

2. ⟨[x], [x]⟩ = 0 implies [x] = 0.

Now, having a scalar product on H⊗algK, we can define the tensor prod-

uct of Hilbert spaces H ⊗ K to be the completion of H ⊗alg K in the

corresponding norm.

Theorem 3.10 (36). Let H and K be Hilbert spaces. Then there exists

a unique inner product ⟨., .⟩ on H ⊗K such that

⟨x⊗ y, x′ ⊗ y′⟩ = ⟨x, x′ ⊗ y, y′⟩ : x, x′ ∈ H, y, y′ ∈ K.

Lemma 3.11 (8). Let H and K be Hilbert spaces and suppose that u ∈

B(H) (a set of all bounded operators on H) and v ∈ B(K) (a set of

all bounded operators on K). Then there is a unique operator u⊗̂v ∈

B(H⊗̂K) such that

(u⊗̂v)(x⊗ y) = u(x)⊗ v(y), x ∈ H, y ∈ K.

36



Furthermore, it holds that

∥u⊗̂v∥ = ∥u∥∥v∥.

Theorem 3.12 (9). [8] The tensor product on the inner product space

H ⊗K of two operators T ∈ B(H) and S ∈ B(K) is the transformation

T ⊗ S : H ⊗K → H ⊗K of H ⊗K into itself such that

T ⊗ S
n∑

i=1

xi ⊗ yi =
n∑

i=1

Txi ⊗ Syi

for every
∑n

i=1 xi ⊗ yi ∈ H ⊗K.

Example 3.13 (1). Let (X,A, µ) be a measure space. Clearly, L2(X,A, µ)

is the space of real valued measurable functions that are square integrable.

Now, we consider the case that X ⊆ Rn and A is the Borel σ−algebra on

X.

Therefore, we drop the σ−algebra and use the notation (L2X,µ) for

brevity. Suppose {ϕi(x)} and {ηi(y)} are orthonormal bases for L2(ϱ1, µ1)

and L2(ϱ2, µ2) respectively. Consider then the set {ϕi(x)ηj(y)}. We can

show that {ϕi(x)ηj(y)} is a complete orthonormal set in L2(ϱ1×ϱ2, µ1⊗µ2)

as follows:

First note that orthonormality is immediate. We proceed to prove com-

pleteness. Let f(x, y) ∈ L2(ϱ1 × ϱ2, µ1 × µ2) be such that

∫
ϱ1

∫
ϱ2

f(x, y)ϕi(x)ηj(y)dµ1(x)dµ2(y) = 0,
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for all i,j. We claim that f = 0 (almost everywhere). We have ,

0 =

∫
ϱ1

∫
ϱ2

f(x, y)ϕi(x)ηj(y)dµ1(x)dµ2(y) =

∫
ϱ2

(

∫
ϱ1

f(x, y)ϕi(x), dµ1(x))ηj(y)dµ2(y).

where the second equality follows by Fubini’s theorem. Now using the

fact that {ηj} is orthonormal basis for L2(ϱ2, µ2) we have that for all i

∫
ϱ1

f(x, y)ϕi(x), dµ1(x) = 0,

µ2 almost everywhere. Let Ei ⊆ ϱ2 be set of measure zero where the

above equality does not hold and let E = ∪iEi. Then, for y ̸= E,

∫
ϱ1f(x, y)ϕi(x), dµ1(x) = 0

for all i, and thus, again using the fact that {ϕi} is a complete orthonor-

mal set in L2(ϱ1, µ1), we have that f(x, y) = 0, µ∗
1 almost everywhere.

Therefore, f = 0, (µ1 ⊗ µ2)
∗ almost everywhere. Hence, we have shown

that {ϕi(x)ηj(y)} is a complete orthonormal set in L2(ϱ1 × ϱ2, µ1 ⊗ µ2).

We can also show the isomorphism

L2(ϱ1 × ϱ2, µ1 ⊗ µ2) ∼= L2(ϱ1, µ1)⊗ L2(ϱ2, µ2)

as follows.

Let us define a mapping U that takes an orthonormal basis of L2(ϱ1, µ1)⊗

L2(ϱ2, µ2) onto an orthonormal basis of L2(ϱ1 × ϱ2, µ1 ⊗ µ2):

U(ϕi ⊗ ηj) = ϕi(x)ηj(y)
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. Note that U extends uniquely to unitary mapping of L2(ϱ1, µ1) ⊗

L2(ϱ2, µ2) onto L
2(ϱ1 × ϱ2, µ1 ⊗ µ2).

Moreover, note that for f ∈ L2(ϱ1, µ1) and g ∈ L2(ϱ2, µ2), f =
∑

i ciϕi,

g =
∑

j djηj, and we have,

U(f ⊗ g) = U((
∑
i

ciϕi)⊗ (
∑
j

djηj))

= U(
∑
i,j

cidjϕiηj)

= (
∑
i

ciϕi)(
∑
j

djηj) = fg.
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Chapter 4

RESULTS AND

DISCUSSIONS

4.1 Introduction

In this chapter we have discussed the main results on the numerical range

of posinormal operators, the spectrum of posinormal operators and the

relationship between the numerical range and spectrum of posinormal

operators. In the first section we discuss numerical ranges of posinormal

operators.

4.2 Numerical range

Lemma 4.1. Let H be a complex Hilbert space and B(H) the algebra of

all bounded linear operators on H. Let A ∈ B(H) be posinormal then

W (A) is an ellipse whose foci are the eigenvalues of A.
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Proof. Choose A such that A =

 λ1 a

0 λ2

 with λ1 and λ2 as the eigen-

velues of A. Now if λ1 = λ2 = λ, we have

A− λI =

 λ a

0 λ

−

 λ 0

0 λ

 =

 0 a

0 0


Let x = (x1, x2), then

(A− λI)x =

 0 a

0 0

 x1

x2

 =

 ax2

0

 = a

 x2

0


Therefore,

∥A− λI∥ = sup{∥a(x2, 0)∥ : |x1|2 + |x2|2 = 1} = |a|

. Hence the radius is 1
2
|a|. Therefore the numerical range

W (A) = {z : |z| ≤ |a|
2
}.

It thus follows that W (A) is a circle with center at λ and radius |a|
2
. Now

if λ1 ̸= λ2 and a = 0 we have A =

 λ1 0

0 λ2

 . If x = (x1, x2), then

Ax =

 λ1 0

0 λ2

 x1

x2

 =

 λ1x1

λ2x2

 .
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Therefore taking the inner product ⟨Ax, x⟩ we get

⟨Ax, x⟩ =
(
λ1x1 λ2x2

) x1

x2

 =
(
λ1x1x1 + λ2x2x2

)
=

(
λ1|x1|2 + λ2|x2|2

)
.

So ⟨Ax, x⟩ = λ1|x1|2 + λ2|x2|2. Now letting t = |x1|2, we therefore write

the above equation as follows

⟨Ax, x⟩ = tλ1 + (1− t)λ2

, since |x1|2 + |x2|2 = 1. So W (A) is the set of convex combinations of λ1

and λ2 and is the segment joining them. If λ1 ̸= λ2 and a ̸= 0 we choose

λ such that it lies between λ1 and λ2. We therefore have

A− λ1 + λ2
2

I =

 λ1−λ2

2
a

0 λ2−λ1

2


In this case, we let z = re−iθ, λ1−λ2

2
= re−iθ and λ2−λ1

2
= −re−iθ so,

e−iθ
(
A− λ1+λ2

2

)
=

 λ1−λ2

2
a

0 λ2−λ1

2

 = A′. Here we see that W (A′)

is an ellipse with the center at (0, 0) and the minor axis |a|, and foci at

(r, 0) and (−r, 0). Thus, W (A) is an ellipse with foci at λ1 and λ2 and

the major axis has an inclination of θ with the real axis.

Remark 4.2. Lemma 4.1 follows [41, Lemma 4] analogously.

Example 4.3 (41, Example 5). Let A ∈ C2 be the operator defined by

the matrix A =

 0 1

0 0

. Take x ∈ C2, x ∈ (f, g), ∥x∥2 = |f |2 +
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|g|2 = 1 with ∥x∥ = 1 Ax =

 0 1

0 0

 f

g

 =

 g

0

 and ⟨Ax, x⟩ =

(
g 0

) f

g

 = gf . Taking absolute values on both sides we have

|⟨Ax, x⟩| = |f ||g| = 1

2
(|f |2 + |g|2) = 1

2

So W (A) ⊂ {z : |z| ≤ 1
2
}, a circle of radius 1

2
centered at (0, 0).

Alternatively, given the operator A defined by the matrix A =

 0 1

0 0


We then have the characteristic polynomial given by

A− λI =

 0− λ 1

0 0− λ


and hence finding the characteristic equation we see that λ2 = 0. There-

fore, λ = 0 is the eigenvalue. Since for the norm we have 1
2
∥A∥ and

therefore normalizing the vector x we see that (∥ x
∥x∥∥) = 1. Now we have

A(f, g) = (g, 0), that is Ax =

 0 1

0 0

 f

g

 =

 g

0

. This implies

that ∥A(f, g)∥ = ∥(g, 0∥ = ∥g∥. From the definition of an operator norm,

∥A∥ = sup{∥A(f, g)∥ : ∥(f, g)∥ = 1}

= sup{∥A(f, g)∥ :
√
f 2 + g2 = 1}

= sup{∥g∥ : f 2 + g2 = 1}

= 1.

Therefore, 1
2
∥A∥ = 1

2
(1) = 1

2
. Therefore, W (A) is a circle of radius 1

2
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centered at (0, 0).

Example 4.4 (41, Example 6). Let A be the unilateral shift on l2 of

square summable sequences. For any x ∈ l2, x = (x1, x2, x3, ......), with

∥x∥ = 1 and
∑∞

i=1 |xi|2 <∞, the unilateral right shift operator A : l1 → l2

is given by Ax = (0, x1, x2, x3, ......).

Now,

⟨Ax, x⟩ = ⟨


0

x1

x2

 ,


x1

x2

x3

⟩

= 0(x1) + x1x2 + x2x3 + ...

= x1x2 + x2x3 + ...

Thus, (|x1| − |x2|)2 ≥ 0 by the arithmetic- geometric mean inequality

implies that |x1|2+|x2|2 ≥ 2(|x1||x2|). Similarly, |x2|2+|x3|2 ≥ 2(|x2||x3|),

also |x3|2 + |x4|2 ≥ 2(|x3||x4|) and so on. Therefore adding all the terms

on the left and similarly on the right of the above equations, we obtain

|x1|2 + 2|x2|2 + 2|x3|2 + 2|x4|2 + .... ≥ 2|x1||x2|+ 2|x2||x3|+ 2|x3||x4|+ ....

We therefore have

|⟨Ax, x⟩| ≤ |x1x2|+ |x2x3|+ ...

= |x1||x2|+ |x2||x3|+ ...

= |x1||x2|+ |x2||x3|+ ...

=
1

2
(2|x1||x2|+ 2|x2||x3|+ ...)
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Now since ∥x∥ = |x1|2 + |x2|2 + ... = 1, we have

|⟨Ax, x⟩| =
1

2
[|x1|2 + 2|x2|2 + 2|x3|2 + ...]

=
1

2
[(|x1|2 + |x2|2 + |x3|2 + ...) + (|x2|2 + |x3|2 + ...)]

=
1

2
[(1 + |x2|2 + |x3|2 + ...)

=
1

2
[1 + (1− |x1|2)]

=
1

2
[2− |x1|2]

If |x1| ̸= 0 we see that |⟨Ax, x⟩| ≤ 1. For if |x1| = 0 and x contains a

finite number of nonzero entries, we have |⟨Ax, x⟩| = 1 if we consider a

minimum natural number n such that xn ̸= 0. Therefore, W (A) is an

open disc of radius < 1.

Lemma 4.5. Let H be a complex Hilbert space and B(H) the algebra

of all bounded linear operators on H. If A ∈ B(H) is posinormal, then

W (A) is nonempty.

Proof. Let {xn}∞n=1 be an orthornomal sequence of vectors in H. For

{xn}∞n=1 to exist in H then

limn→∞⟨Axn, xn⟩ = a.

The sequence {⟨Axn, xn⟩}∞n=1 is bounded and ∥x∥ = 1 because xn has

norm 1. Now, using A = A∗ (because all posinormal operators are self
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adjoint by the fact that they are all positive operators) we have

⟨Axn − ∥A∥xn, Axn − ∥A∥xn⟩ = ⟨Axn, Axn⟩ − ⟨Axn, ∥A∥xn⟩ − ⟨∥A∥xn, Axn⟩+

⟨∥A∥xn, ∥A∥xn⟩

= ∥Axn∥2 − 2∥A∥⟨Axn, xn⟩+ ∥A∥2∥xn∥2

≤ 2∥A∥2∥xn∥2 − 2∥A∥⟨Axn, xn⟩

= 2∥A∥2∥xn∥2 − 2∥A∥⟨Axn, xn⟩

⇒ 2∥A∥2∥xn∥2 − 2∥A∥2∥xn∥2

= 0

Therefore, as n → ∞, the sequence {xn}∞n=1 converges weakly to 0 in H

such that

limn→∞⟨Axn, xn⟩ = a.

Thus x is an eigenvector for the eigenvalue ∥A∥. This implies that W (A)

is nonempty.

The next result due to Toeplitz and Hausdorff [47, Theorem 4.1], shows

that the numerical range of linear operators on a Hilbert space is always

convex. We give its proof when λ1 = λ2, ∀λ1, λ2 ∈ W (A) for completion.

Theorem 4.6. Let H be a complex Hilbert space and B(H) the algebra of

all bounded linear operators on H. Let A ∈ B(H), then W (A) is always

convex.

Proof. Let λ1, λ2 ∈ W (A), λ1 = λ2. We prove that (1−t)λ1+tλ2 ∈ W (A)

whenever t ∈ [0, 1].

If B = αI+βA, where α, β ∈ C are such that 0 = α+βλ1 and 1 = α+βλ2
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it is sufficient to show that t ∈ W (B) for all t ∈ [0, 1]. Let us fix unit

vectors x, y ∈ H such that 0 = (Bx|x), 1 = (By|y) and define g : R → C

by g(t) = (Bx|y)e(−it) + (By|x)e(it), t ∈ R

Moreover, there exists t0 ∈ [0, π] such that

Im g(t0) = 0. Since Im g(0) = −Im g(t0) = 0.

Now observe that the vectors x and y=eit0y are linearly independent.

Otherwise x = αŷ for some α ∈ C, |α| = 1 and

0 = (Bx|x) = |α|2(Bŷ—ŷ)=(By|y) = 1.

Define continuous functions z and f by

z(b) = (1−b)x+by
∥(1−b)x+by∥ , b ∈ [0, 1] and

f(b) = (Bz(b)|z(b)), b ∈ [0, 1]. A straight forward calculation shows that

f is a real-valued function with f(0) = 0 and f(1) = 1.

Thus t ∈ [0, 1] ⊂ f([0, 1]) ⊂ [0, 1] ⊂ W (B) as required.

Theorem 4.7. Let H be a complex Hilbert space and B(H) the algebra

of all bounded linear operators on H. Let A ∈ B(H) be posinormal then

∥A∥ = W (A).

Corollary 4.8. Let A ∈ B(H) be posinormal then 0 ∈ W (A).

Proof. Since A is bounded, then every eigenvalue of A that lies on the

boundary of W (A) is a normal eigenvalue. An eigenvalue λ is said to be

normal for an operator A ∈ B(H) if

Ker(A− λI) = Ker(A∗ − λI).

Let us assume without loss of generality that λ = 0. Suppose there is a
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unit vector f for which Af = 0 but A∗f ̸= 0. Let g = A∗f
∥A∗f∥ . Because

⟨f, A∗f⟩ = ⟨Af, f⟩ = ⟨0, f⟩ = 0 the pair (f,g) is orthonormal in H, and

therefore spans a two dimensional subspace M . It follows that W (A)

contains the numerical range of the compression AM of A to M . It is

enough to show that 0 is in the interior of W (AM). Now the matrix

of AM with respect to the orthonormal basis (f,g) of M is of the form 0 a

0 ∗

, where a = ⟨AMg, f⟩. We need to show that a ̸= 0, this will

establish W (AM) as a non degenerate elliptical disk with one focus at 0,

and therefore complete the proof. Now,

a = ⟨AMg, f⟩ = ⟨PAg, f⟩ = ⟨Ag, f⟩ = ⟨g, A∗f⟩,

where the term on the right, upon recalling that g = A∗f
∥A∗f∥ , is just

⟨A∗f, A∗f⟩
∥A∗f∥

= ∥A∗f∥ ̸= 0,

as desired.

4.3 Spectrum

Lemma 4.9. Let A be a posinormal operator. If z ∈ σp(A) for 0 < p < 1
2
,

then z ∈ σp(A
∗).

Proof. Suppose 0 ∈ σp(A). Then there exists a non-zero vector x ∈ H

such that Ax = 0. Since |A|2x = A∗Ax = 0 and |A| ≥ 0, we have

(A∗A)
1
2
kx = 0(k = 1, 2, ...). For m ∈ N such that 1

m
< p, we have
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(A∗A)
1
2mx = 0. It follows that (A∗A)px = 0. Clearly (AA∗)px = 0 since A

is posinormal. Therefore A∗x = 0. Next assume that z ∈ σp(A) for non-

zero z ∈ C. Then there exists a non-zero vector y ∈ H such that Ay = zy.

Let A = U |A| be a polar decomposition of A with unitary operator U.

Since U |A|y = zy, it follows that |A| 12U |A| 12 |A| 12y = z|A| 12y. We know

that Ã = |A| 12U |A| 12 . Hence, we have Ã∗ = |A| 12U∗|A| 12y = z̄.|A| 12y. Thus

A∗(|A|y) = z̄.|A|y. Since |A|y ̸= 0, then z ∈ σp(A
∗).

Theorem 4.10. Let A ∈ B(H) be a posinormal operator. Then

σ(A) = {z : z̄ ∈ σπ(A
∗)}.

Proof. Since we have σ(A) = σπ(A) ∪ {z : z̄ ∈ σπ(A
∗)}, it suffices to

show that σ(A) = {z : z̄ ∈ σπ(A
∗)}. Assume that z ∈ σπ(A). Then we

have z ∈ πp(T(A)) where T is a mapping. Since T(A) is posinormal

we have z ∈ σp(T(A
∗)). Also since, σp(T(A

∗)) = σπ(A
∗), it follows that

z̄ ∈ σπ(A
∗).

Lemma 4.11. Let A = (A1, ....., An) be doubly commuting n-tuple of

posinormal operators on H. If z = (z1, ....., zn) ∈ σp(A), then z̄ =

(z̄1, ....., z̄n) ∈ σp(A∗), where A∗ = A∗
1, ...., A

∗
n.

Proof. There exists a non-zero vector x ∈ H such that A1x = z1x(i =

1, ...., n). We assume that z1, ...., zk are non-zero and zk+1 = .... = zn = 0.

therefore we obtain

A∗
k+1 = ... = A∗x = 0.

Also A∗
i (Ai|x) = z̄i.|Ai|x, where AAi

is the positive operator in a polar

decomposition Ai = Ui|Ai| where i = 1, ...., k. Suppose |A1|....|Ak|x = 0.
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Since (A1....Ak) is doubly commuting k-tuple of a posinormal operator,

then Ui and |Ai| commute with Uj and |Aj| for every i ̸= j. Thus we have

A1.A2...Akx = 0.

It follows that z1, ...., zk = 0. Since every zi ̸= 0(i = 1, ..., k). Therefore

we have |A1|....|Ak|x ̸= 0. For i(i = 1, ..., k), we have

A∗
i (|A1|...|Ak|x) = |A1|...|Ai−1|.|Ai+1|...|Ak|.A∗

i |Ai|x

= z̄i(|Ai|...|Ak|x). Since also Ai commutes with |A1...|Ak|, we have

A∗
i (|A1|...|Ak|x) = 0(i = k + 1, ...., n)

Therefore it follows that z̄ = (z̄1, ..., z̄n) ∈ σp(A∗).

Theorem 4.12. Let A = (A1, ..., An) be doubly commuting n-tuple of

posinormal operators on H. Then

σ(A) = {(z1, ..., zn) ∈ Cn : (z̄1, ..., z̄n) ∈ σπ(A∗)}.

Proof. Since A is a doubly commuting n-tuple it follows that (z1, ..., zn) ∈

σ(A). If there exist some partition {i1, ..., im}∪{j1, ..., js} = {1, ..., n} and

a sequence xk of unit vectors in H such that

(Aiµ − ziµ)xk → 0 and (Ajv − zjv)
∗xk → 0 as k → ∞, for µ = 1, ...,m and

v = 1, ..., s. Consider the mapping T such that

(zi1 , ..., zim , z̄j1 , ..., z̄js) ∈ σπ(T (B),
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where B = (Ai1 , ..., Aim)

Therefore T (B) = (T (Ai1 , ..., T (Aim), T (A
∗
ji
)). Since T (Ai) is a posinormal

operator for every i = 1, ..., n we have (z̄1, ..., z̄n) ∈ σp(T (A
∗)). Therefore

it follows that (z̄1, ..., z̄n) ∈ σπ(A
∗). Clearly σπ(A

∗) ⊂ σ(A) and so

σ(A) = {(z1, ..., zn) ∈ Cn : (z̄1, ..., z̄n) ∈ σπ(A∗)}.

Theorem 4.13. Let A = (A1, ..., An) be a doubly commuting n-tuple

of posinormal operators on H. If (r1, ..., rn) ∈ σ(A∗A) ∪ σ(AA∗), then

there exists (z1, ..., zn ∈ σ(A) such that |zi|2 ≥ ri(i = 1, ..., n), where

A∗A = (A∗
1A1, ..., A

∗
nAn) and AA∗ = (A1A

∗
1, ..., AnA

∗
n).

Proof. We shall prove the theorem by induction. The theorem holds

when n = 1.We assume that the theorem holds for all doubly commuting

(n−1)− tuple of posinormal operators. Assume that (r1, ..., rn) ∈ σ(A∗A).

Now since σ(A∗A) = σπ(A∗A), we have (
√
r1, ...,

√
rn) ∈ σπ(|A|), where

|A| = (|A1|, ..., |An|). Consider the mapping T : B(H) → B(H) such

that σ(T (A) = σ(A) and σπ(A) = σπ(T (A)) = σp(T (A)) where σπ(A)

and σp(A) are the approximate point spectrum and the point spectrum

of A, respectively. Let R = ker(|T (An)| −
√
rn) ̸= {0}. Then R is a

reducing subspace of T (A1), ..., T (An−1) and (T (A1)|R, ..., (T (An−1)|R) is

a doubly commuting n − 1-tuple of posinormal operators on R. Since∑n
i=1(|T (Ai)| −

√
ri)

2 is not invertible, then

ker(
n∑

i=1

(|T (Ai)| −
√
ri)

2) = {∩n−1
i=1 ker(|T (Ai)| −

√
ri)} ∩ R ̸= {0}.
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Hence it follows that (
√
r1, ...,

√
rn−1) ∈ σ(R), whereR = (T (Ai)|R, ..., T (An−1)|R).

therefore by the induction hypothesis, there exists (z1, ..., zn−1) ∈ σ(S)

such that |zi| ≥
√
ri : i = 1, ..., n− 1, where S = (T (Ai)|R, ..., T (An−1)|R).

It thus follows that (z̄1, ..., z̄n−1) ∈ σp(S
∗, ) there exists a non-zero vector

x0 in R such that

T (A∗
i )x0 = z̄ix0 : i = 1, ..., n− 1.

Therefore
∑n−1

i=1 (T (Ai) − zi)(T (Ai) − zi)
∗ + (|T (An)| −

√
rn)

2 is not in-

vertible. Hence

ker(
n−1∑
i=1

(T (Ai)− zi)(T (Ai)− zi)
∗ + (|T (An)| −

√
rn)

2) ̸= {0}.

Let P = ker(
∑n−1

i=1 (T (Ai)− zi)(T (Ai)− zi)
∗. Then P reduces T (An). Also

since R ∩ P ̸= {0}, √rn ∈ σ(|T (An)|N |). Since T (An)|R is a posinormal

operator then there is a zn ∈ C such that (T (An)|R − zn)(T (An)|R − zn)
∗

is not invertible and |zn|2 ≥ rn.

Since
n∑

i=1

(T (Ai)− zi)(T (Ai)− zi)
∗

is not invertible, this point z1, ..., zn is in σ(A) and satisfies

|zi|2 ≥ ri(i = 1, ..., n).

Thus the proof is complete.
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4.4 The relationship between the numeri-

cal range and spectrum

In this section we investigate the relationship between the numerical range

and the spectrum of a posinormal operator. Our main aim in this section

is to show that if A is a posinormal operator then

σp(A) ⊆ Wp(A).

Theorem 4.14. Let A ∈ B(H) on a complex Hilbert space H be posinor-

mal. Then σp(A) ⊆ Wp(A).

Proof. If λ is not a member of Wp(A), then d = dist(λ,Wp(A)) > 0,

(where dist is the distance function derived from the modulus in C) then

λI −A has an inverse and (∥λI −A)−1∥ < 1
d
. By definition of distance d

we have

d ≤ |⟨Ax, x⟩ − λ|, ∀x ∈ H∥x∥ = 1

This implies,

d∥x∥2 ≤ |(⟨A− λI)x, x⟩|,∀x ∈ H

and using the cauchy-Schwatz inequality, we see that

(∥A− λI)x∥ ≥ d∥x∥.

Since (⟨A − λI) is bounded below, (λI − A)−1 exists on R(A−λI) and is
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bounded; moreover

∥(A− λI)−1y∥ ≥ d−1∥y∥,∀λ ∈ R(A−λI)

Hence, there are only two possibilities, that is λ ∈ ρ(A) or λ ∈ Rσ(A).

Suppose λ ∈ Rσ(A). Since,

R(A−λI)
⊥

= {RA−λI}⊥

= ker(A∗ − λI)(Nullspace).

If λ ∈ Rσ(A), then R(A−λI)
⊥ ̸= {0}, that is, ker(A∗ − λ̄I) ̸= {0}.

Hence λ̄ is an eigenvalue of A∗. If x ∈ H, ∥x∥ = 1 and is such that

A∗x = λ̄x, then Ax = λx, for x ̸= 0

⟨Ax, x⟩ = ⟨x,A∗x⟩

= ⟨x, λx⟩

= λ⟨x, x⟩

= λ∥x∥2

= λ

This implies that λ ∈ Wp(A), which is a contradiction. Hence, if λ is not

a member of Wp(A) then λ is not a member of σp(A), this shows that

σp(A) ⊆ Wp(A).

Alternatively, λ ∈ Wp(A) implies that there exists a sequence {xn} of
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unit vectors in H such that since for such xn

|λ− ⟨Axn, xn⟩| = |⟨(λI − A)xn, xn⟩|

≤ ∥(λI − A)xn∥∥xn∥

≤ ∥(λI − A)xn∥ → 0

as n→ ∞

Therefore

λ = limn→∞⟨Axn, xn⟩.

It therefore follows that λ ∈ Wp(A). Since

|λ| = ∥A∥ = w(A) = sup{|λ| : λ ∈ σp(A)}

So ∥A∥ ∈ σp(A) implies that ∥A∥ ∈ Wp(A), hence

σp(A) ⊆ Wp(A).

Theorem 4.15. Let A be posinormal, then We(A) = conv(σe(A)) if

and only if ∀λ ∈ conv(σe(A)), ∥Rλ(A)∥ ≤ (d(λ, conv(σe(A))), where d =

dist(λ,We(A)) > 0, ( dist is the distance function derived from the mod-

ulus in C.)

Proof. We apply the transformation A 7→ αA+ β and suppose that

[λ < 0, 0 ∈ convσe(A) ⊂ {z ∈ C : Rez ≥ 0}],∀λ < 0.
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Let We(A) = conv(σe(A)). Now for all x ∈ H, we have

∥(A− λ)x∥2 = ∥Ax∥2 − λ[(Ax, x) + (x,Ax)] + λ2∥x∥2 ≥ λ2∥x∥2

Since (A − λ) is invertible, we have ∥x∥2 ≥ λ2∥(A − λ)−1x∥2, ∀x ∈ H.

Hence |λ|−1 ≥ ∥(A− λ)−1x∥, or |λ| = d(λ, convσ(A)).

Conversely, suppose that ∥Rλ(A)∥ ≤ (d(λ,Convσe(A))). We need to

prove that We(A) = conv(σe(A)). It suffices to show that if λ is not

in the convex hull of σe(A), then also λ is not in We(A).

By applying the transformation A 7→ αA+ β we can assume that

[λ < 0, 0 ∈ convσe(A) ⊂ {z ∈ C : Rez ≥ 0}],∀λ < 0.

The estimate dist(c, Convσe(A)) ≥ |c| implies ∥(A− c)−1∥ ≤ |c|−1, so

c2∥x∥2 ≤ ((A− c)x|(A− c)x).

Let c tend to infinity, therefore

(Ax|x) + (x|Ax) ≥ 0.

Hence,

We(A) ⊂ {z ∈ C : Rez ≥ 0},

that is, λ is not in We(A) as desired.

Theorem 4.16. Let A be a posinormal operator on H. Then σe(A) ⊆

We(A).

Proof. Let σe(A) ∈ We(A) and let B = λIH − A∀A ∈ B(H). There are
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three cases: the range of B is not closed, the kernel of B is infinite di-

mensional, or the kernel of B∗ is infinite dimensional.

If the range of B is not closed, then B is not bounded below on the or-

thogonal complement of ker(B). Let X = ker(B)⊥. Then there exists a

unit vector x1 ∈ X such that ∥Bx1∥ ≤ 1. Then, since B is not bounded

below, there must exist a unit vector x2 ∈ X orthogonal to x1 such that

∥Bx2∥ ≤ 1
2
. Repeating this process gives us an orthonormal sequence

{xn}n≥1 such that limn→∞∥Bxn∥ = 0. Thus λ ∈ σe(A).

If the kernel of B is infinite dimensional, we can easily construct an or-

thonormal sequence {xn}n≥1 such that ⟨Bxn, xn⟩ = 0 for all n. In the

same way if the kernel of B∗ is infinite dimensional then λ̄ ∈ We(A
∗). We

know that We(A
∗) = WeA therefore λ̄ ∈ WeA hence λ ∈ We(A) and thus

σe(A) ⊆ We(A).
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Chapter 5

CONCLUSION AND

RECOMMENDATIONS

5.1 Introduction

In this last chapter, conclusions are drawn and recommendations made

based on the objectives of the study and the results obtained.

5.2 Conclusion

Results for characterization of numerical ranges and spectra of posinor-

mal operators have been obtained in this study.The aim of this study

has been to investigate the numerical ranges and spectra of posinormal

operators and to establish the relationship of the numerical range and

spectrum of a posinormal operator.We investigated the numerical range

of a bounded posinormal operator A acting on a complex Hilbert space H
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and showed that it is an ellipse whose foci are the eigenvalues of A and it

possesses the following properties: the numerical range of A is nonempty;

W (A) is always convex;Zero is contained in the numerical range of A, i.e

0 ∈ W (A); the norm of A is a subset of the closure of W (A) and the

numerical radius of A is equal to the norm of A.

Then we investigated the spectrum of a bounded posinormal operator A

acting on a complex Hilbert space H and proved that it satisfies Xia’s

property, i.e σ(A) = {z : z̄ ∈ σπ(A
∗)}. For a posinormal operator A if z

is a member of the point spectrum of A the the closure of z is a member

of the point spectrum of the adjoint of A. Lastly, doubly commuting n-

tuples of posinormal operators are jointly normaloid.

Finally the study has established the relationship between the numeri-

cal range and spectrum of a posinormal operator. The following results

describes the relationship between the numerical range and spectrum

of a posinormal operator: For a posinormal operator A ∈ B(H) on a

complex Hilbert space H, σp(A) ⊆ Wp(A); We(A) = conv(σe(A)); and

σe(A) ⊆ We(A).

Therefore, the main results of the numerical ranges and spectra of posi-

normal operators and the relationship between the numerical range and

spectrum of a posinormal operator obtained in this study are in line with

the stated objectives.

5.3 Recommendations

The results obtained are specific to the numerical ranges and spectra of

posinormal operators on a complex Hilbert space. It is interesting to
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investigate and characterize the numerical ranges and spectra of poly-

nomially posinormal operators and coposinormal operators. It is also

important to establish the relationship between the numerical range and

spectrum of these Hilbert space operators.

Further research can be done on characterization of the numerical ranges

and spectra of posinormal operators when the Hilbert space is dense and

non-separable. Other properties of posinormal operators, for example

norms, can also be characterized.
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