dc.contributor.author |
Obogi, Robert |
|
dc.contributor.author |
Ondiany, John Joseph O |
|
dc.contributor.author |
Mude, Lao Hussein |
|
dc.contributor.author |
Monari, Fred Nyamitago |
|
dc.date.accessioned |
2025-04-07T13:05:54Z |
|
dc.date.available |
2025-04-07T13:05:54Z |
|
dc.date.issued |
2024 |
|
dc.identifier.uri |
https://doi.org/10.9734/jamcs/2024/v39i71912 |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/123456789/8746 |
|
dc.description.abstract |
Let n be a positive integer, yn 1 cyclotomic polynomial and Zq be a given finite field. In this study we
determined the number of cyclic codes over Z31. First, we partitioned the cyclotomic polynomial yn 1 using
cyclotomic cosets 31 mod n and factorized yn 1 using case to case basis. Each monic divisor obtained is a
generator polynomial and generate cyclic codes. The results obtained are useful in the field of coding theory
and more especially, in error correcting codes. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Journal of Advances in Mathematics and Computer Science |
en_US |
dc.subject |
Code; cyclic codes; cyclotomic coset |
en_US |
dc.title |
On the Number of Cyclic Codes Over Z31 |
en_US |
dc.type |
Article |
en_US |