Kisii University Institutional Repository

On the Number of Cyclic Codes Over Z31

Show simple item record

dc.contributor.author Obogi, Robert
dc.contributor.author Ondiany, John Joseph O
dc.contributor.author Mude, Lao Hussein
dc.contributor.author Monari, Fred Nyamitago
dc.date.accessioned 2025-04-07T13:05:54Z
dc.date.available 2025-04-07T13:05:54Z
dc.date.issued 2024
dc.identifier.uri https://doi.org/10.9734/jamcs/2024/v39i71912
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/8746
dc.description.abstract Let n be a positive integer, yn 􀀀 1 cyclotomic polynomial and Zq be a given finite field. In this study we determined the number of cyclic codes over Z31. First, we partitioned the cyclotomic polynomial yn 􀀀1 using cyclotomic cosets 31 mod n and factorized yn 􀀀 1 using case to case basis. Each monic divisor obtained is a generator polynomial and generate cyclic codes. The results obtained are useful in the field of coding theory and more especially, in error correcting codes. en_US
dc.language.iso en en_US
dc.publisher Journal of Advances in Mathematics and Computer Science en_US
dc.subject Code; cyclic codes; cyclotomic coset en_US
dc.title On the Number of Cyclic Codes Over Z31 en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account