Kisii University Institutional Repository

On the Number of Cyclic Codes Over Z31

Show simple item record

dc.contributor.author Ondiany, John Joseph O.
dc.contributor.author Obogi, Robert Karieko
dc.contributor.author Mude, Lao Hussein
dc.contributor.author Monari, Fred Nyamitago
dc.date.accessioned 2025-04-12T15:44:37Z
dc.date.available 2025-04-12T15:44:37Z
dc.date.issued 2024-07-10
dc.identifier.issn 2456-9968
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/8853
dc.description.abstract Let n be a positive integer, yn 􀀀 1 cyclotomic polynomial and Zq be a given finite field. In this study we determined the number of cyclic codes over Z31. First, we partitioned the cyclotomic polynomial yn 􀀀1 using cyclotomic cosets 31 mod n and factorized yn 􀀀 1 using case to case basis. Each monic divisor obtained is a generator polynomial and generate cyclic codes. The results obtained are useful in the field of coding theory and more especially, in error correcting codes. en_US
dc.language.iso en en_US
dc.publisher Journal of Advances in Mathematics and Computer Science en_US
dc.subject Code en_US
dc.subject cyclic codes en_US
dc.subject cyclotomic coset en_US
dc.title On the Number of Cyclic Codes Over Z31 en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account