dc.contributor.author | Ondiany, John Joseph O. | |
dc.contributor.author | Obogi, Robert Karieko | |
dc.contributor.author | Mude, Lao Hussein | |
dc.contributor.author | Monari, Fred Nyamitago | |
dc.date.accessioned | 2025-04-12T15:44:37Z | |
dc.date.available | 2025-04-12T15:44:37Z | |
dc.date.issued | 2024-07-10 | |
dc.identifier.issn | 2456-9968 | |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/8853 | |
dc.description.abstract | Let n be a positive integer, yn 1 cyclotomic polynomial and Zq be a given finite field. In this study we determined the number of cyclic codes over Z31. First, we partitioned the cyclotomic polynomial yn 1 using cyclotomic cosets 31 mod n and factorized yn 1 using case to case basis. Each monic divisor obtained is a generator polynomial and generate cyclic codes. The results obtained are useful in the field of coding theory and more especially, in error correcting codes. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Journal of Advances in Mathematics and Computer Science | en_US |
dc.subject | Code | en_US |
dc.subject | cyclic codes | en_US |
dc.subject | cyclotomic coset | en_US |
dc.title | On the Number of Cyclic Codes Over Z31 | en_US |
dc.type | Article | en_US |